PHOTOMULTIPLIER TUBE MODULES

HAMAMATSU

People are said to get more than seventy percent of their information about our world from their eyes. However, there are vast sums of information and unknown possibilities hidden within light not visible to the naked eye. This kind of light includes ultraviolet, infrared, X-ray and ultra-low level light impossible for human eyes to detect. Since its founding Hamamatsu Photonics has for some 50 years been investigating not only light seen by the human eye but also light that far exceeds this level. Hamamatsu Photonics has marketed dozens of products and committed itself to pioneering work in yet unexplored areas in many fields including industrial and academic research. The photomultiplier tube, one typical product from Hamamatsu Photonics is a photodetector offering exceedingly high sensitivity and high-speed response. Hamamatsu has also developed photomultiplier tube modules to make the photomultiplier tube with its amazing history of results, even easier to use in wider applications. This pamphlet serves as your introduction to the photomultiplier tube modules.

Hamamatsu Photonics will continue to deliver innovative breakthroughs in a diverse range of fields, always striving to make human life fuller and richer by "researching the many ways to use light".

CONTENTS

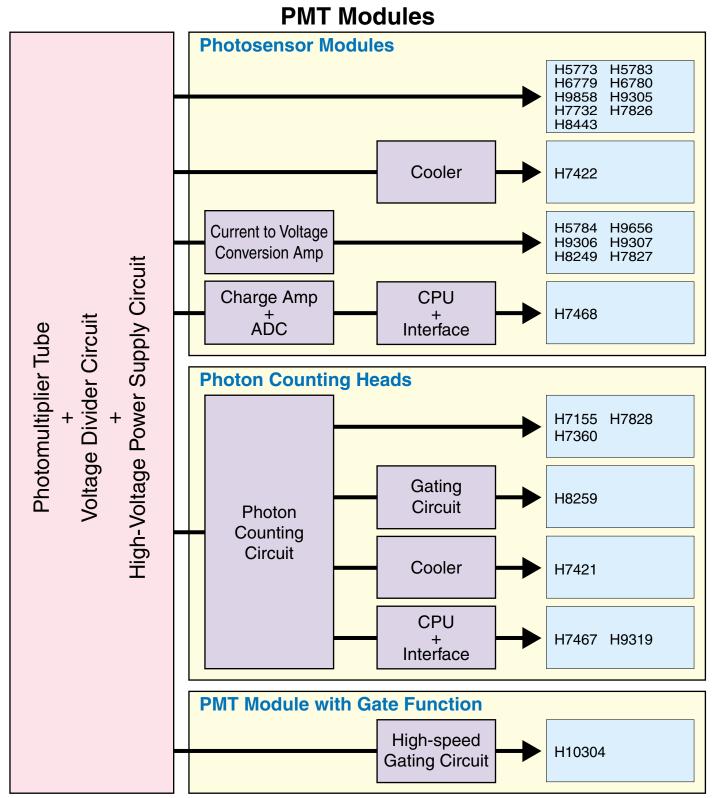
Selection Guide Product Lineup Functions Characteristics	4 5
Spectral Response Constitution Examples	10
Application Examples	.12
Current Output Type Photosensor Modules	16 18 20
Side-on PMT Modules H7732 Series Compact Head-on PMT Modules H7826 Series Head-on PMT Module H8443	26 28
Voltage Output Type Photosensor Modules	32 34 36 38
Photosensor Module with CPU+Interface	42
Photon Counting Heads Metal Package PMT Modules H7155 Series. Metal Package PMT Modules with Cooler H7421 Series. Side-on PMT Modules H8259 Series. Compact Head-on PMT Modules H7828 Series. Head-on PMT Modules H7360 Series.	46 48 52 54
Photon Counting Heads with CPU+Interface	58
PMT Module with Gate Functions Metal Package PMT Module H10304 Series	
Related Products Power Supply for PMT Modules C7169 Amplifier Units C7319/C6438/C6438-01/C9663/C5594-44 Photon Counting Unit C9744 Data Acquisition Unit C8908 Optical Blocks for PMT Modules Counting Unit C8855 Counting Board M8784 Counting Board M9003 PhotonDetection Unit C9692 Series	66 67 67 68 69 70 71 72
Technical Guide General Characteristics Power Supply Circuit Characteristics Photon Counting Head	73 74 75
PMT Module with Gate Function Internal CPU+IF Module Precautions	76
FIEGAULIOUS	11

Selection Guide

Product Lineup

Hamamatsu offers a full lineup of photomultiplier tube (PMT) modules adaptable to various kinds of applications and measurements. Now you can make the best choice from among our PMT modules available with diverse device characteristics and shapes, analog or digital outputs, CPU and interfaces for control and data transfer with computers and even gating function.

PMT Modules


Туре	Metal Package Type	Compact Head-on Type	Head-on Type	Compact Side-on Type	Side-on Type
Photosensor Modules Current Output With Cooler	н5773/H5783 H6779/H6780 H9858 *	H7826	H8443	H9305	H7732
Photosensor Modules Voltage Output	* H5784/H9656	H7827		H9306/H9307	H8249
Photosensor Module With Charge Amp+ ADC+ CPU+ Interface	H7468				
Photon Counting Heads Photon Counting	H7155	H7828	H7360		H8259
With Cooler	H7421				
With CPU+ Interface	H7467		H9319		
PMT Module With Gate Function	H10304				

* Products are applicable to "OPTICAL BLOCKS FOR PMT MODULES" listed on page 68.

0

Functions

PMT module functions are shown with a chart format below. The PMT module is basically comprised of a photomultiplier tube to convert light into electrical signals, a high-voltage power supply circuit, and a voltage divider circuit to distribute the optimum voltage to each dynode, all assembled into a single compact case. In addition to these basic PMT modules, Hamamatsu also provides modules having various additional functions such as signal processing, cooling and interface to PC.

5

Characteristics

The table below shows characteristic comparison among different PMT modules, allowing you to easily find and compare the measurement wavelength range, time response, photosensitive area size and outer dimensions. Note: The measurement wavelength is shown as the wavelength range covered by the device series and may differ according to the individual product. The cubic ratio in the outer dimension column is compared by setting the volume of the H5773/H6779 series as a reference figure of 1.

Photosensor	Modules
-------------	---------

Туре	Type No.	Spectral Response	Rise Time	Photosensitive		utside Size	Input	Remarks
туре		200 400 600 800 (nm)	0 1 2 3(ns)	Area (mm)	Cubic Ratio	Dimensions (mm)	Voltage (V)	Heilidiks
	H5773 Series	← → →	▲		1	$50 \times 25 \times 18$	+15	Low power consumption
	H5783 Series	185 to 920	0.78	φ8		$22 \times 22 \times 50$	+15	
	H6779 Series	← →	▲		1	$50 \times 25 \times 18$	+15	Low ripple noise
	H6780 Series	185 to 920	0.78	φ8		$22 \times 22 \times 50$	+15	Fast settling time
	H9858 Series	← →	A		1	$50 \times 25 \times 18$	+3	For portable unit
	H9000 Selles	185 to 920	0.78	φ8		50 × 25 × 16	+3	Low power consumption
	H7422 Series	\longleftrightarrow		•	9.3	56 × 36 × 104	+15	Built-in cooler
Current		300 to 920	0.78 / 1	φ7/φ5		50 × 50 × 104	+15	
Output	H9305 Series	\longleftrightarrow	A		2.3	$19 \times 53 \times 51$	+15	High gain, compact
	119303 Series	185 to 900	1.4	3.7 × 13		19 × 55 × 51	+15	High sensitivity in near IR
	H7732 Series	← →	▲		8.0	$38 \times 95 \times 50$	+15	High gain
	11/732 Series	185 to 900	2.2	4 × 20		36 × 95 × 50	+15	
	H7826 Series	$\leftarrow \rightarrow$	▲		3.2	$26 \times 50 \times 56$	+15	For portable unit
	HI020 Selles	300 to 850	1.5	φ15		20 × 50 × 50	+15	Easily couples to scintillator
	H8443	\leftrightarrow	A		4.9	ø34 × 121	. 4.5	Wide sensitive area
		300 to 650	1.6	φ22		φ34 × 121	+15	

Photosensor Modules

Туре	Type No.	Spectral Response 200 400 600 800 (nm)	Frequency Response DC 100 200 (kHz)			Itside Size Dimensions (mm)	Input Voltage (V)	Remarks
	H5784 Series	185 to 920	20	• •8	1.3	$22\times22\times60$	+/-15	Feedback resistance 1 $M\Omega$
	H9656 Series	185 to 920	200	● ø8	1.4	51 imes 24 imes 25	+/-15	Feedback resistance 100 kΩ
Voltage	H9306 Series	185 to 900	20	3.7 × 13	2.3	19 imes 53 imes 51	+/-15	Feedback resistance 1 $M\Omega$
Output	H9307 Series	← → 185 to 900	200	3.7 × 13	2.3	19 imes 53 imes 51	+/-15	Feedback resistance 100 k Ω
	H8249 Series	← → 185 to 900	20 200	4 × 20	8.0	38 imes 95 imes 50	+/-15	Feedback resistance 1 M Ω (20 kHz) Feedback resistance 100 k Ω (200 kHz)
	H7827 Series	 → 300 to 850 	20 200	φ ₁₅	3.2	$26\times50\times56$	+/-15	Feedback resistance 1 M Ω (20 kHz) Feedback resistance 100 k Ω (200 kHz)

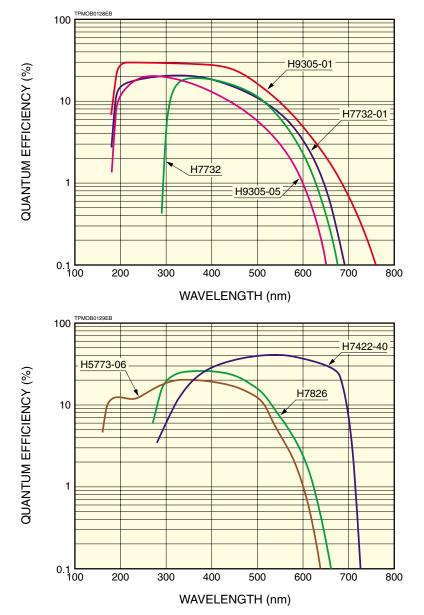
Photosensor Module

Туре	Type No.	Spectral Response 200 400 600 800 (nm)	Characteristics	Photosensitive Area (mm)		Itside Size Dimensions (mm)	Input Voltage (V)	Remarks
Internal CPU +interface	H7468 Series	185 to 920	Integration Time 40 μs to 500 ms	Φ8	4.7	$35\times50\times60$	+5	Charge amp+ADC

Photon Counting Heads

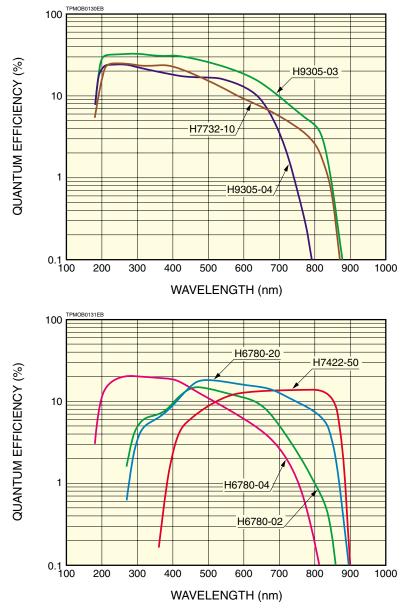
Turne	Type No.	Spectral Response	Count Linearity	Photosensitive	Οι	Itside Size	Input	Remarks
Туре	Type No.	200 400 600 800 (nm)		Area (mm)	Cubic Ratio	Dimensions (mm)	Voltage (V)	Heillarks
	H7155 Series	$\leftarrow \rightarrow$	(with internal		2.4	$22 \times 50 \times 50$	+5	Small size
	H7 155 Selles	300 to 850	1.5 10 prescaler)	<i>\phi</i> 8		22 × 50 × 50	+5	Prescaler type available
	H7421 Series	$\leftarrow \rightarrow$	→	•	9.3	56 × 36 × 104	+5	Built-in cooler
	TTT 421 Genes	300 to 890	1.5	<i>\$</i> 5		50 × 50 × 104	+5	High quantum efficiency
	H8259 Series	$\leftarrow \rightarrow$	→		8.0	38 imes 95 imes 50	+5	Visible to near IR
	Hozog Selles	185 to 900	2.5	4×6 4×20 (-02 Type)		36 × 95 × 50	+5	Gate function
Photon-	H7828 Series	$\leftarrow \rightarrow$	→		3.2	$26\times50\times56$	+5	For portable unit
counting	H/020 Selles	300 to 850	1.5	φ 1 5				
Ū	H7360 Series		→		4.6	ø34 × 114	+5	Cylindrical shape
	Th Sou Selles	300 to 850	6	φ22		φ34 × 114	+5	Wide sensitive area
	H7467 Series	$\leftarrow \rightarrow$	→		4.7	35 imes 50 imes 60	+5	Photon counting circuit+
	H/40/ Selles	300 to 850	1.5	φ8		$35 \times 50 \times 60$	+5	counter+ CPU+interface
	H0210 Carioa	$\leftarrow \rightarrow$	► ►		5.1	# 2E v 100		Photon counting circuit+
	H9319 Series	ries 300 to 850 20 (with inter		<i>•</i> 22		φ35 × 120	+5	counter+ CPU+interface

PMT Module

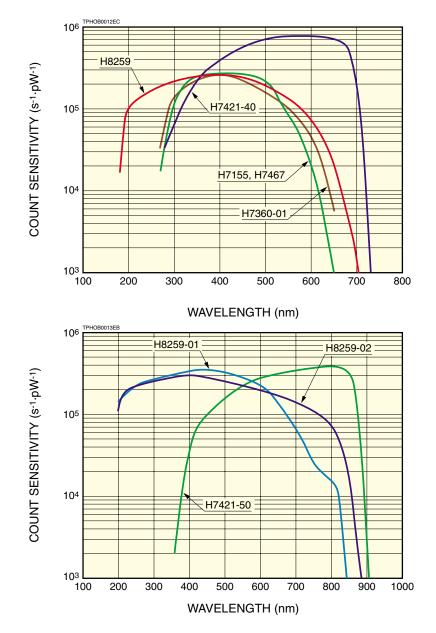

Туре	Type No.	Spectral Response 200 400 600 800 (nm)	Characteristics	Photosensitive Area (mm)		Itside Size Dimensions (mm)	Input Voltage (V)	Remarks
With gate function	H10304 Series	← → → 185 to 920	▲ 0.78	φ8	4.7	$35\times50\times60$	+15	High-speed gate Small size

Spectral Response

The quantum efficiency of the PMT module is compared in the following graphs. Quantum efficiency is the conversion ratio of photoelectrons per photon and is a very important factor that determines the S/N characteristic. It is essential to select a PMT module having high quantum efficiency on the wavelengths of light to be measured. To obtain a lower detection limit with a good S/N ratio in low-light-level measurement, the dark current and dark count must also be considered as well as the quantum efficiency.


Spectral response characteristics example of PMT modules sensitive to UV through visible light are shown in the graphs below.

Typical Quantum Efficiency (Unit: %)

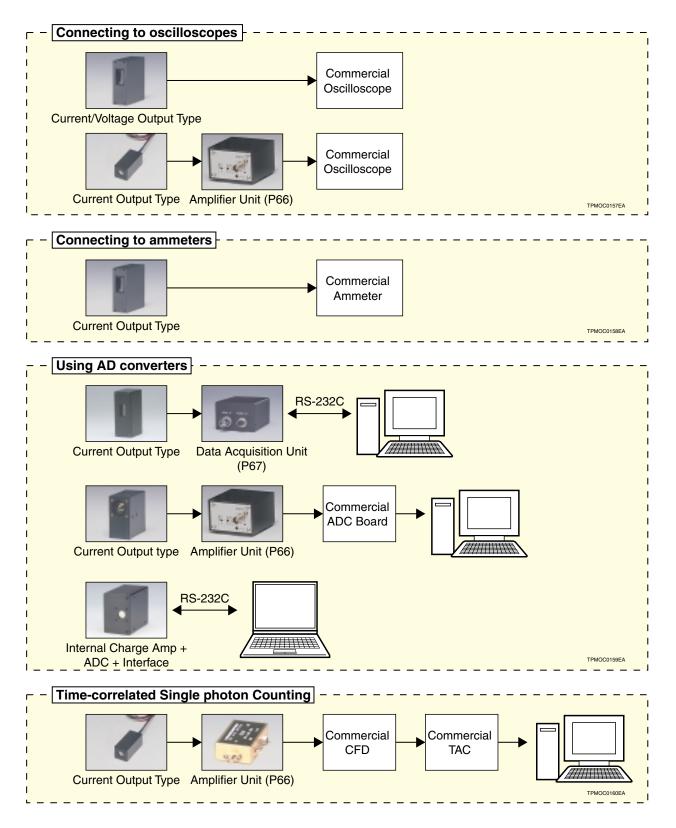

Wavelength	H7732	H7732-01	H9305-01	H9305-05	H7826	H5773-06	H7422-40
200 nm	—	14.9	27.3	11.8	—	12.4	—
300 nm	4.1	20.2	28.9	19.5	20.0	18.5	6.0
400 nm	18.6	18.6	27.3	13.0	25.7	18.9	28.2
500 nm	11.6	11.0	16.4	5.8	16.1	12.4	40.0
600 nm	2.2	3.5	5.0	0.9	2.4	1.0	36.1
700 nm	_	0.1	0.7		—	—	7.7

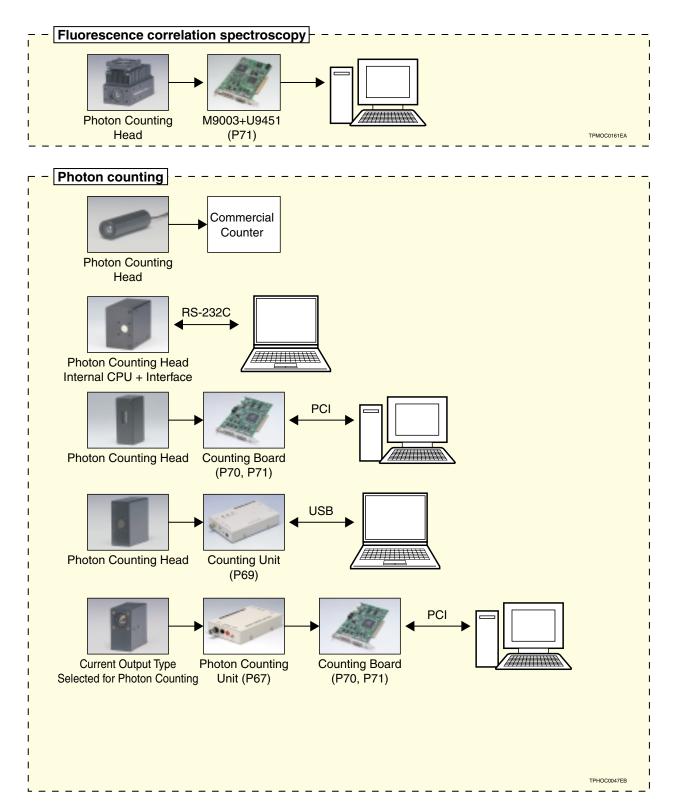
Spectral response characteristics example of PMT modules sensitive to UV through near infrared light are shown in the graphs below.

Typical Quantum Efficiency (Unit: %)

Wavelength	H9305-03	H9305-04	H7732-10	H6780-02	H6780-04	H6780-20	H7422-50
200 nm	29.0	21.3	15.8	—	11.5	—	
300 nm	32.9	22.3	23.8	5.0	20.1	3.4	
400 nm	31.3	18.3	22.9	9.6	18.6	8.9	2.3
500 nm	25.7	16.6	15.4	14.4	11.0	18.3	8.8
600 nm	18.6	12.9	9.3	11.1	6.1	15.9	12.9
700 nm	9.7	3.5	5.7	5.2	2.6	12.8	13.7
800 nm	4.3	0.1	2.7	1.0	0.2	7.4	13.9

Spectral photon counting sensitivity example of PMT modules are shown in the graphs below.

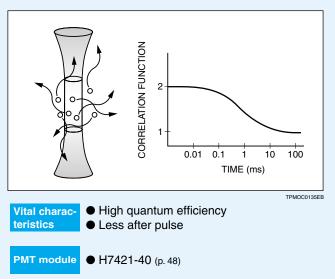

Typical Photon	Counting Sensi	tivity (Unit: s ^{-1.} pW ⁻¹)


Wavelength	H7155	H7421-50	H7421-40	H7360-01	H8259	H8259-01	H8259-02
200 nm		—	—	—	$1.1 imes 10^5$	$1.4 imes10^5$	$1.1 imes 10^5$
300 nm	$1.2 imes 10^5$	—	$6.3 imes10^4$	$1.4 imes10^5$	$2.1 imes10^5$	$2.7 imes10^5$	$2.5 imes10^5$
400 nm	$2.7 imes10^5$	$3.3 imes10^4$	$4.0 imes10^5$	$2.7 imes10^5$	$2.6 imes10^5$	$3.3 imes10^5$	$3.0 imes10^5$
500 nm	$2.2 imes10^5$	$1.6 imes10^5$	$7.0 imes10^5$	$1.7 imes 10^{5}$	1.9 × 10 ⁵	3.2 × 10⁵	2.5 × 10⁵
600 nm	2.1×10^{4}	$2.7 imes 10^5$	$7.6 imes10^5$	$4.6 imes 10^4$	$7.5 imes 10^4$	$2.3 imes 10^5$	$2.0 imes 10^5$
700 nm	_	$3.4 imes10^5$	$1.9 imes 10^{5}$		1.5×10^{3}	$6.8 imes 10^4$	$1.4 imes 10^{5}$
800 nm		$3.9 imes10^5$				$1.6 imes 10^4$	$7.5 imes 10^4$
900 nm	_	$2.8 imes10^3$					$3.0 imes10^2$
			•				

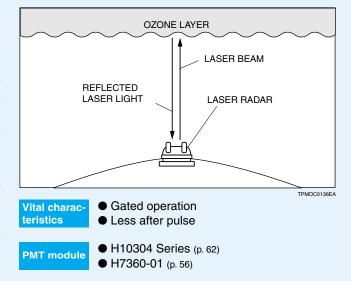
Constitution Examples

Examples of how to use PMT modules and related products are shown below according to the type of measurement. Power connections to the PMT module and other products are not shown here. Check the product instructions for how to make the power supply connections.

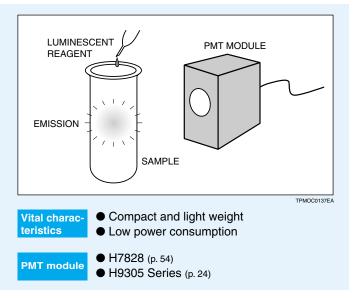
The cable ends of the cable output types (H5783, H9305, H7360 series, etc.) do not have connectors such as BNC connectors. We can install a connector (extra charge) if needed. Please specify the type of connector along with the cable length when placing your order.



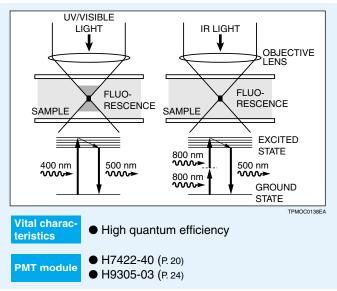
Application Examples


Fluorescence-correlation Spectroscopy

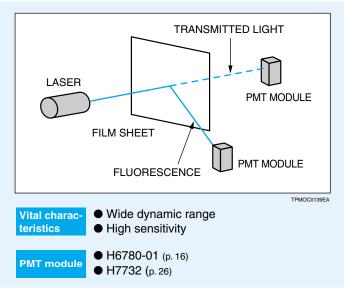
Advances in laser technology and high performance computers are allowing dramatic progress in research that studies the behavior of single molecules. Fluorescence-correlation spectroscopy is one technique for measuring single molecules. The principle of fluorescence-correlation spectroscopy was conceived in the 1970s, but it wasn't until the 1990s that the proper equipment was around to use it. The equipment structure is largely the same as the confocal laser microscope but there is no Galvano mirror, and only small area of solution is observed. The movement of the fluorescent molecules entering and leaving the area subject to observation and the fluorescent intensity are measured by auto correlation algorithm.



One use of laser radar (often called "LIDAR") is making atmospheric measurements. A laser beam is emitted into the atmosphere and the light scattered by the "atmospheric molecules" and "suspended elements" then detected. The scattered light is absorbed by "trace gases" during its return and is therefore extremely faint. These "trace gases, and the distribution and concentration of suspended elements" can be analyzed by measuring this faint light. Lidar is actually used in measurements of aerosol and ozone concentrations, CO₂, SO₂ and NOx concentrations, wind velocity and also the extent of visibility.

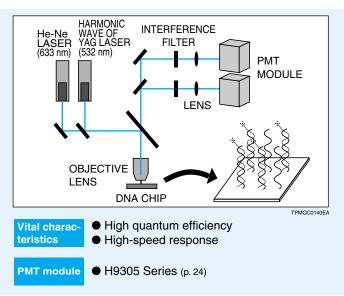

Hygiene Monitor

The hygiene monitor is also called an ATP analyzer. This device extracts the ATP held in bacteria and cells and makes measurements by causing a reaction with the luminous reagent in the ATP using the firefly's light emission principle. This hygiene monitor is used for making purity checks at restaurants and factories producing foods, etc. In the test, the surface of the object for inspection is wiped with a cotton swab and the extent of dirt or contamination immediately found just by inserting the swab in the sanitary monitor. A great feature of the hygiene monitor is that the photon counting method allows highly sensitive measurements using just an extremely small amount of sample material.

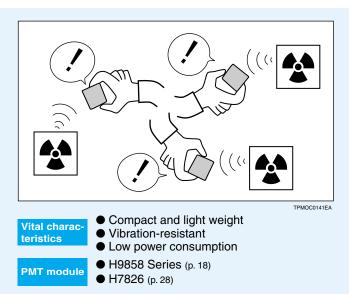

Multi-Photon Microscope

In this method, fluorescent molecules can be excited with near infrared light by letting the molecules absorb two photons almost simultaneously, and the resulting visible to UV fluorescence is observed. The cross sectional area absorbing the two photons is extremely small, so nearly all the fluorescence must be detected as a signal at any position from the focal point. Other advantages are that nearly twice the wavelength is used compared to excitation by one photon. This not only means that unwanted effects from scattering and background noise inside the sample due to excitation light are drastically reduced but also that damage to cells from UV light is minimized.

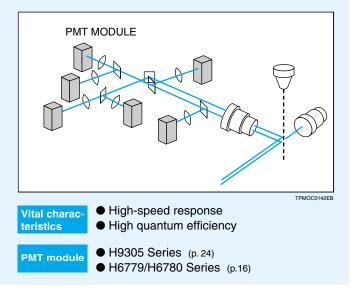
X-ray Image Readout


Devices used to read X-ray images consist of a method using a brightness storage phosphor plate and a method for directly reading X-ray film. The brightness storage phosphor plate can temporarily store the X-ray information that was detected. The stored information on the plate is scanned by a laser beam and then extracted by measuring the fluorescent intensity with PMT modules. The X-ray film is also scanned by a laser beam in the same way and the transmitted light is detected as an electrical signal, which is then converted into a digital signal. These devices can show the X-ray image on a CRT monitor, store and file the image on a disk, or send the image data over a telephone line.

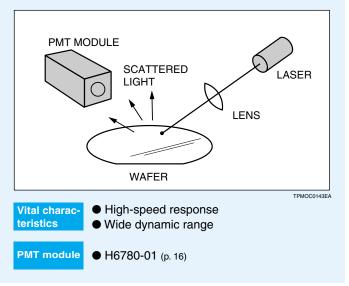
DNA Chip Reader


A DNA chip reader is used to analyze colossal amounts of genetic information. The DNA chip is a substrate on which a large amount of DNA is arrayed usually by a method using semiconductor lithographic technology, or a method dispensing the DNA onto a slide glass using a high-precision robot. On the DNA chip, hybridization is performed on the DNA labeled by a fluorescent dye. The DNA chip is then scanned by laser beam and by measuring the fluorescent intensity of the hybridized DNA spot, the genetic information is acquired from among the targeted DNA.

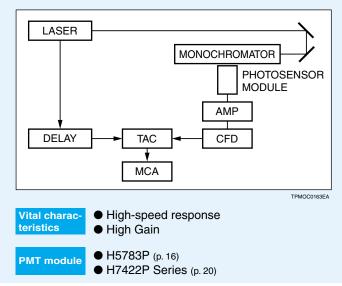
(Hybridization is process to link 2 chains of DNA each having a complementary base.)


Portable Survey Meters

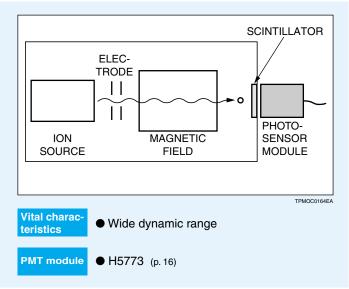
Portable radiation measurement devices or survey meters are essential for detecting radioactive substances for public safety in customs inspections, nuclear power plants, and hospitals, etc. Among various radiation measurement devices, the most sensitive type uses a combination of photomultiplier tube and scintillator and offers sensitivity ranging from several ten to hundreds of times higher than Geiger-Müller counters (GM counters). Photomultiplier tubes used in this application must be compact, rugged, and easily coupled to scintillators, and also have low power consumption.


Flowcytometers

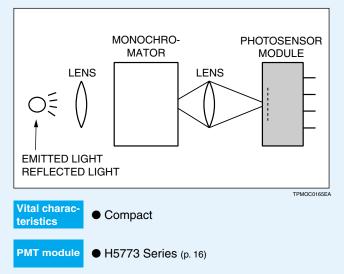
In a flowcytometers, cells labeled with fluorescent material flow in a solution along a flow cell while moving at a certain interval. A laser beam is then irradiated onto the cells and the scattered light from the cells and fluorescence from the fluorescent material are measured by a photomultiplier tube. Various kinds of information are acquired from the scattered and fluorescence such as cell surface antigens, cell periods, number of cells, immunity functions and reticulocytes, and the cells can also be separated from each other. Rapid advances are recently being made in irradiation by multiple lasers, 6channel color analysis, high-speed operation, and compact flow systems.


Semiconductor Wafer Inspection Systems

These systems find defects on semiconductor wafers, by scanning a laser beam onto the wafer and then detecting the resulting scattered light to find any debris, dirt or damage on the wafer surface. Advances in semiconductor technology have made lithographic lines on wafers even finer so that even smaller defects must now be detected making these inspection devices an essential tool.


Time-correlated Single Photon Counting

Time-correlated single photon counting is used to measure lowlevel light emitted from a sample when excited with a pulsed laser, based on the theory that a histogram obtained by repeatedly measuring the single photon many times at a slightly delayed timing represents a waveform of the emitted light. Electrical signals produced by a laser driver are slightly delayed and used as trigger signals while the PMT module detects the light emission from a sample. The PMT module output pulse signals are then input to a time-to-amplitude converter (TAC) that produces an electrical pulse in proportion to the time difference between a light detection signal and a trigger signal. A multichannel analyzer (MCA) creates a frequency distribution of the output signals from the TAC, to obtain a waveform of the light emission of the sample.


Mass Spectroscopy

Mass spectroscopy is an essential measurement technique to analyze samples in various fields such as medicine, pharmacy and environment monitoring. Samples are ionized by vaporization under a high vacuum pressure. The generated ions are accelerated by strong electric fields and sent to a mass analyzer with a strong magnetic field where the ions are separated according to the ratio (m/e) of mass (m) to electron charge (e). Ions with larger molecular weight are detected with a PMT module in conjunction with a scintillator.

Spectral Radiometers

Spectral radiometers are used to measure spectral distribution, luminance and chromaticity-correlated color temperature of display devices such as LCD and CRT, without making contact with them. Although solid-state photodetectors are commonly used for spectral radiometers, PMT modules enable precision measurement even at low light levels.

Metal Package PMT Photosensor Modules H5773/H5783/H6779/H6780 Series

The H5773/H5783/H6779/H6780 series are photosensor modules housing a metal package PMT and high-voltage power supply circuit. The metal package PMTs have a metallic package with the same diameter as a TO-8 package used for semiconductor photodetectors, and deliver high gain, wide dynamic range and highspeed response while maintaining small dimensions identical to those of photodiodes. The internal high-voltage power supply circuit is also compact, making the module easy to use.

Considering the mounting methods, a cable output type and a pin output type are provided, and a total of 7 types are available according to the wavelength range to be measured. P-type is also available with selected gain and dark count ideal for photon counting under extremely low light conditions.

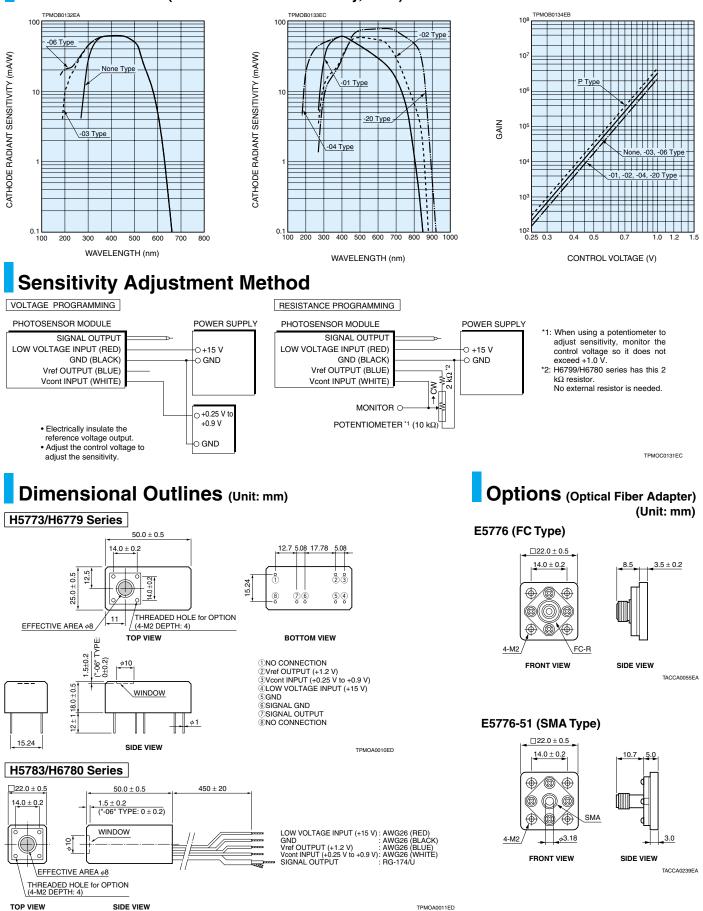
Product Variations

Suffix Type No.	None	-01	-02	-03	-04	-06	-20	Output Type	Features
H5773	yes	yes	yes	yes	yes	yes	yes	On-board	Low power consumption
H5783	yes	yes	yes	yes	yes	yes	yes	Cable output	
H5773P	yes	no	no	no	no	no	no	On-board	For photon counting
H5783P	yes	no	no	no	no	no	no	Cable output	Low power consumption
H6779	yes	yes	yes	yes	yes	yes	yes	On-board	Low ripple noise
H6780	yes	yes	yes	yes	yes	yes	yes	Cable output	Fast settling time

Suffix	Spectral Response
None	300 nm to 650 nm
-01	300 nm to 850 nm
-02	300 nm to 880 nm
-03	185 nm to 650 nm
-04	185 nm to 850 nm
-06	185 nm to 650 nm
-20	300 nm to 920 nm

The suffix -06 type (synthetic silica window) has higher sensitivity than the -03 type below 300 nm in wavelength range.

Specifications


Parameter					H5773 / H5	783 / H677	9 / H6780	Series		Unit
Su	ffix			None	-03, -06	-01, -0	4	-02	-20	_
Input Voltage				+11.5 to +15.5					V	
Ма	ıx. Ir	nput Voltage				+18				V
Ма	x. In	nput Current				73 / H5783 79 / H6780)		mA
Ма	ix. C	Output Signal Current				100		-		μA
		Control Voltage			+1.0 (lr	nput impeda	ance 100	kΩ)		V
		ended Control Voltage Adjustmen	it Range		X	+0.25 to +		,		V
		ve Area	Ŭ			φ8				mm
Se	nsiti	ivity Adjustment Range				1: 10 ⁴				_
Pe	ak S	Sensitivity Wavelength		420	420	400		500	630	nm
	1	minous Sensitivity	Min.	40	40	80		200	350	μA/lm
de	Lu	minous Sensitivity	Тур.	70	70	150		250	500	
Cathode	Blu	e Sensitivity Index (CS 5-58)	Тур.	8	8	_		—	—	_
Ca	Re	ed/White Ratio	Тур.	_		0.2		0.25	0.45	_
	Ra	diant Sensitivity *1	Тур.	62	62	60		58	78	mA/W
	be	Luminous *2	Min.	10	10	15		25	35	A/Im
	Ì₹	Sensitivity	Тур.	50	50	75		125	250	
	larc	Radiant Sensitivity *1 *2	Тур.	$4.3 imes10^4$	$4.3 imes10^4$	3.0 × 10	04 2	2.9×10^{4}	$3.9 imes10^4$	A/W
0	Standard Ty	Dark Current *2 *3	Тур.	0.2	0.2	0.4		2	2	nA
Anode	s	Dark Ourient	Max.	2	2	4		20	20	
And		Gain *2	Min.	$7.5 imes 10^{5}$						
	e		Тур.	1 × 10 ⁶			_			
	Type	Radiant Sensitivity *1 *2	Тур.	6.2×10^{4}			—			A/W
	٩	Dark Count *2 *3	Тур.	50			—			s-1
			Max.	100 —						3
Ris	se Ti	ime *2	Тур.			0.78				ns
				H5773 Series		eries	H6779 S		H6780 Series	
		Noise *2 *4 (peak to peak)	Max.		1.2			0.6		mV
		g Time *5	Max.		2			0.2		S
		ting Ambient Temperatur	re *6	+	5 to +50			+5 to +	-45	°C
-		e Temperature *6				-20 to +				°C
We	eight	t sured at the peak sensitivity		60	80 voltage = +0.8 V		60	storage in (80	g

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +0.8 V *3: After 30 r *4: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 M Ω , Load capacitance = 22 pF


*5: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *6: No condensation

16

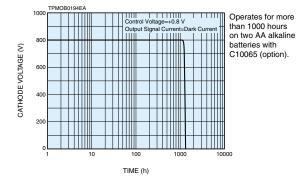
Characteristics (Cathode radiant sensitivity, Gain)

Metal Package PMT Photosensor Modules H9858 Series

Product Variations

Suffix	Spectral Response
None	300 nm to 650 nm
-01	300 nm to 850 nm
-02	300 nm to 880 nm
-03	185 nm to 650 nm
-04	185 nm to 850 nm
-06	185 nm to 650 nm
-20	300 nm to 920 nm
The ouffix OF t	una (aunthatia ailiaa window) haa

The suffix -06 type (synthetic silica window) has higher sensitivity than the -03 type below 300 nm in wavelength range.


Specifications

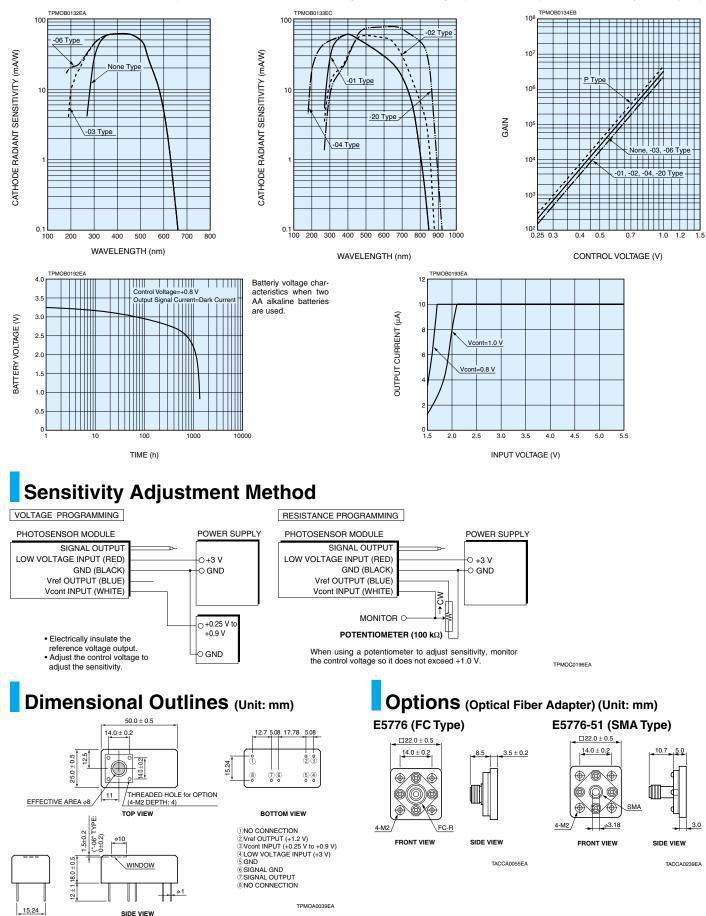
The H9858 series are photosensor modules housing a metal package PMT and high-voltage power supply circuit. The metal package PMTs have a metallic package with the same diameter as a TO-8 package used for semiconductor photodetectors, and deliver high gain, wide dynamic range and high-speed response while maintaining small dimensions identical to those of photodiodes. The internal highvoltage power supply circuit is also compact, making the module easy to use.

A P-type is also available with selected gain and dark count ideal for photon counting under extremely low light conditions.

Compared to the previous types, the power consumption is reduced to 1/15* and the weight to 2/3, making the H9858 series ideal for portable measurement devices.

* Input Voltage=+3.0 V, Control Voltage=+0.8V

Evaluation board C10065


		Parameter				H9858 Series			Unit
Su	ıffix			None -03, -06 -01, -04 -02 -20					_
Inp	Input Voltage *1					+2.0 to +5.0			V
Ma	ax. I	nput Voltage				+5.5			V
Ma	ax. Ir	nput Current *2				2.7			mA
Ma	ax. C	Dutput Signal Current *3	*4			100			μA
Ma	ax. C	Control Voltage			+1.0 (nput impedance	1 MΩ)		V
Red	comm	ended Control Voltage Adjustmen	nt Range			+0.25 to +0.9			V
Eff	fecti	ve Area				φ8			mm
Se	ensit	ivity Adjustment Range				1: 104			—
		Sensitivity Wavelength		420	420	400	500	630	nm
		minous Sensitivity	Min.	40	40	80	200	350	A /lune
de	Lu	ininious Sensitivity	Тур.	70	70	150	250	500	μA/Im
Cathode	Blu	e Sensitivity Index (CS 5-58)	Тур.	8	8	_	_	_	_
Sa	Re	ed/White Ratio	Тур.		—	0.2	0.25	0.45	—
	Ra	adiant Sensitivity *5	Тур.	62	62	60	58	78	mA/W
	be	Luminous *3	Min.	10	10	15	25	35	A/Im
		Sensitivity	Тур.	50	50	75	125	250	A/Im
	Standard Type	Radiant Sensitivity *3 *5	Тур.	$4.3 imes10^4$	$4.3 imes 10^4$	$3.0 imes10^4$	$2.9 imes10^4$	$3.9 imes 10^4$	A/W
	and	Dark Current *3 *6	Тур.	0.2	0.2	0.4	2	2	n A
bde	St	Dark Current * *	Max.	2	2	4	20	20	nA
Anode		Gain *3	Min.	$7.5 imes10^5$		-	_		
	e l	Gain	Тур.	$1 imes 10^6$		-	_		—
	Type	Radiant Sensitivity *3 *5	Тур.	$6.2 imes 10^4$		-	_		A/W
	۱ <u>۲</u>	Dark Count *3 *6	Тур.	50		-	_		- S ⁻¹
		Dark Count °°	Max.	100		-	_		S''
Ri	se T	ïme * ³	Тур.			0.78			ns
Rip	Ripple Noise *3 *7 (peak to peak) Max.		Max.			0.6			mV
Se	ttlin	g Time * ⁸	Max.			10			S
Op	bera	ting Ambient Temperatur	re *9			+5 to +50			°C
Ste	orag	e Temperature *9				-20 to +50			°C
W	eigh	t				45			g

*2: Input voltage = +3.0 V, Control voltage = +0.8 V, Output signal current = Dark current *3: Control voltage = +0.8 V

*4: Input voltage > +2.1 V *6: After 30 minutes storage in darkness

*4: Input voltage > +2.1 V *5: Measured at the peak sensitivity wavelength *6: After 30 m *7: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 $M\Omega$, Load capacitance = 22 pF

18 *8: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.

Characteristics (Cathode radiant sensitivity, Gain, Battery operation, Operation at 10 µA output)

Metal Package PMT with Cooler Photosensor Modules H7422 Series

The H7422 series are photosensor modules with an internal high-voltage power supply circuit and a cooler installed to the metal package photomultiplier tube. Efficient cooling was achieved by placing the cooler near the photomultiplier tube to reduce thermal noise emitted from the photocathode and a high S/N ratio can be obtained even at extremely low light levels.

The H7422-40 has high sensitivity in the 300 nm to 720 nm wavelengths. The H7422-50 is sensitive along a wide spectral range from 380 nm to 890 nm. The H7422-01, H7422-02 and H7422-20 have a maximum output current value of 100 μ A and so are extremely effective when measurements are needed over a wide dynamic range. The photomultiplier tube is maintained at a constant temperature by monitoring the output from a thermistor installed near the photomultiplier and then regulating the current to the thermoelectric cooler.

Heatsink with fan (A7423) sold separately

Product Variations

Type No.	Spectral Response	Max. Output Signal Current	Features		
H7422-40	300 nm to 720 nm		GaAsP photocathode, QE 40 % at peak		
H7422P-40	300 mm to 720 mm	04	wavelength, high gain (P type)	For photon counting	
H7422-50	000 mm to 000 mm	2 μΑ	GaAs photocathode, QE 12 % at peak		
H7422P-50	380 nm to 890 nm		wavelength, high gain (P type)	For photon counting	
H7422-01	300 nm to 850 nm		Multialkali photocathode		
H7422-02	300 nm to 870 nm	100 μA	Infrared-extended multialkali photocathode		
H7422-20	300 nm to 920 nm		Infrared-extended high-sensitivity multialkali photocathode		

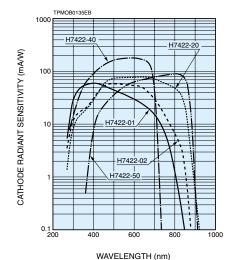
Specifications

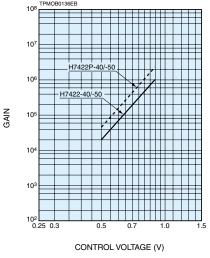
		Parameter	r				H7422 Series			Unit
Suffix			-40	-40 -50 -01 -02 -20						
Input Voltage				+11.5 to +15.5						
Ма	ıx. Inp	out Voltage for M	ain U	nit			+18			V
Ма	x. Inp	out Current for Ma	ain Ur	nit	6	2		30		mA
Ma	x. Inpi	ut Voltage for Therm	noelec	tric Cooler			2.6			V
Ma	x. Inpi	ut Current for Thern	noelec	tric Cooler			2.2			А
Ма	ιx. Οι	utput Signal Curr	ent		2	2		100		μA
Ma	ıx. Co	ontrol Voltage				+0.9 (In	put impedance	100 kΩ)		V
Rec	comme	nded Control Voltage	Adjustr	nent Range	+0.5 t	0 +0.8		+0.25 to +0.8		V
Eff	ective	e Area			φ	5		φ7		mm
Se	nsitiv	vity Adjustment R	lange		1:	1: 50 1: 10 ⁴				
Pea	ak Se	ensitivity Waveler	ngth		580	800	400	500	630	nm
de				420 nm	108	15	56	40	40	
Cathode	Radiant Sensitivity		Тур.	550 nm	176	50	36	56	72	mA/W
ő				800 nm		90	1.2	6.4	46	
	Standard Type	Radiant Sensitivity *1	Тур.	550 nm	$8.8 imes10^4$	$2.5 imes 10^4$	1.8×10^{4}	$2.8 imes 10^4$	$3.6 imes 10^4$	A/W
	Typ	Dark Current *1 *2		Тур.	0.4	0.5	0.03	0.08	0.1	nA
Anode	St	Dark Guilent		Max.	1.0	1.3	0.08	0.2	0.25	10.0
An	e	Radiant Sensitivity *3	Тур.	550 nm	$1.8 imes 10^{5}$	$5.0 imes 10^{4}$		—	—	A/W
	P Type	Dark Count *2 *	3	Тур.	100	125	—	—	—	s ⁻¹
			Max.	300	375		—			
	Rise Time *1 Typ.			1.0	1.00 0.78					
· ·	Ripple Noise *1 *4 (peak to peak) Max.			0.6					mV	
		Time *5		Тур.	0.2					S
		ng Ambient Temp	peratu	ire *6	+5 to +35					٥C
	<u> </u>	Temperature *6					-20 to +50			٥°
	eight						Approx. 400	After 20 minutes		g

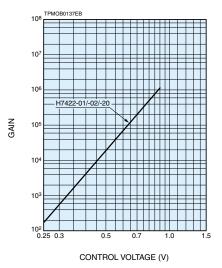
*1: Control voltage = +0.8 V PMT setting temperature 0 °C, used with C8137-02 and A7432 *2: After 30 minutes storage in darkness

*3: Plateau voltage = control voltage, PMT setting temperature 0 °C, used with C8137-02 and A7423

*4: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 M Ω , Load capacitance = 22 pF

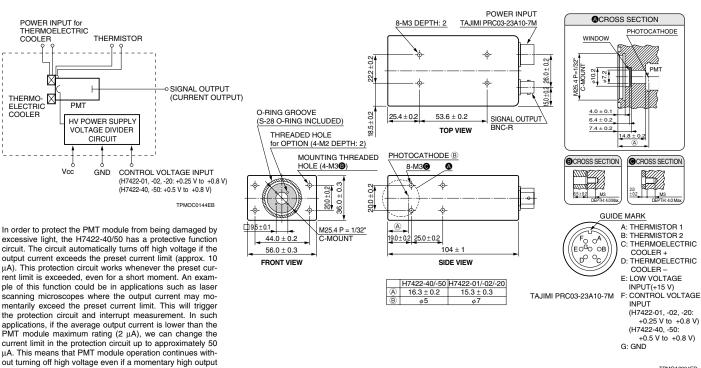

*5: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *6: No condensation


Cooling Specifications

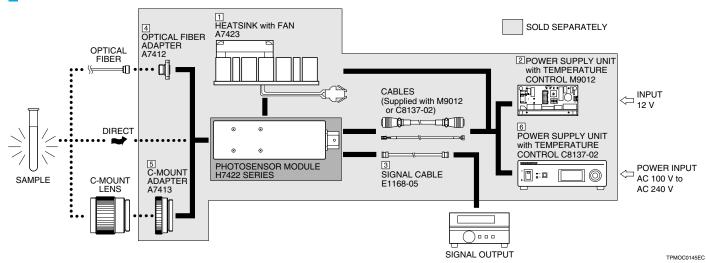

Parameter	H7422 / H7422P Series	Unit
Cooling Method	Thermoelectric cooling	
Max. Cooling Temperature (ΔT) *7	35	°C
Cooling Time *7	Approx. 5	min

*7: Input current to thermoelectric cooler=2 A

Characteristics (Cathode radiant sensitivity, Gain)



Block Diagram


occurs. Users can choose this option when ordering.

TPMOA0024ED

H7422 Series Option

Heatsink with Fan A7423

The temperature of the H7422 outer case rises due to the thermoelectric cooler housed in the case. The A7423 heatsink efficiently radiates away this heat to prevent a temperature rise in the H7422. The A7423 can be easily installed onto the H7422 with four M3 screws. Apply a heat conductive grease onto the joint surface shared by the H7422 and A7423.

Par	ameter	Value	Unit
Input Voltage	•	12	V
	During Lock	140	mA
Input Current	During Lock During Operation	90	mA
Operating Vo	ltage	10.2 to 13.8	V
Weight		120	g

• Power Supply Unit with Temperature Control M9012 The M9012 is an on-board type power supply unit.

By just connecting to 12 V supply, the M9012 provides power necessary to operate the H7422 series. The M9012 also controls the thermoelectric cooler in the H7422 series so that the output and noise can be maintained at constant levels even when the ambient temperature changes. The thermoelectric cooler and PMT operation can be controlled from an external device by connecting it to the I/O connector on the M9012.

Par	ameter	Description / Value	Unit
Max. Cooling	Temperature (ΔT)	35	°C
Input Voltag	e	12	V
Max. Input C	Current	1.2	Α
Max. Power	Consumption	15.8	V·A
Main Circuit	Output Voltage	12	V
Max. Output Curren	t for Thermoelectric Cooler	2.2	Α
Output Volta	ige for Fan	12	V
Max. Contro	Output Voltage	1.26	V
Max. Contro	Input Voltage	0.9	V
Control	Thermoelectric Cooler	Non-insulated TTL level input	
Signal	PMT	Non-insulated TTL level input	—
Input Voltage	Fan	Non-insulated TTL level input	
Error Signal	Thermoelectric Cooler	Non-insulated TTL level output	
Output Voltage	PMT	Non-insulated TTL level output	_
LED Output	PMT	5	V
Error		5	V
Setting Cool	ling Temperature	0	°C
Weight (exc	luding cables)	120	g

Signal Cable E1168-05

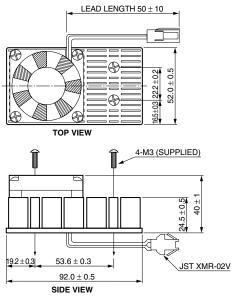
This signal cable is terminated with a BNC connector for easily connecting the H7422 to external equipment.

Optical Fiber Adapter (FC Type) A7412

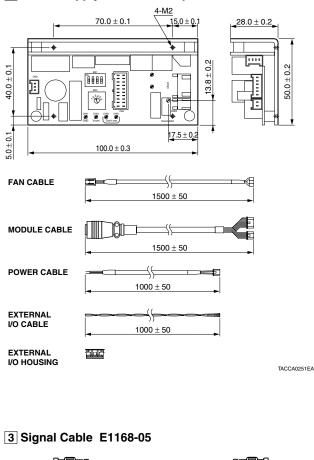
The A7412 is an FC type optical fiber connector that attaches to the light input window of the H7422. The A7412 can easily be secured in place with four M2 screws.

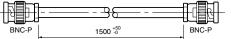
C-mount Adapter A7413

The A7413 mount adapter is used when a C-mount lens protruding 4 mm or more from the flange-back must be installed onto the H7422.

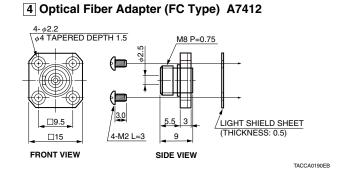

• Power Supply Unit with Temperature Control C8137-02

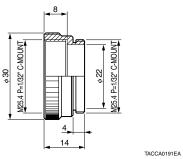
The C8137-02 is a power supply unit with a temperature control function. Just connecting to an AC source of 100 V to 240 V generates the output voltages for the thermoelectric cooler and the A7423 fan, needed for operating the H7422. The photomultiplier tube temperature can be maintained to 0 °C by monitoring the thermistor and regulating the output current for the thermoelectric cooler. Control voltage can be varied by a knob on the front panel.


Parameter	Value	Unit
Max. Cooling Temperature (ΔT)	35	°C
Setting Cooling Temperature	0	°C
(preset at factory)	0	C
AC Input Voltage	100 to 240	V
Input Voltage Frequency	50/60	Hz
Power Consumption	30	V∙A
Main Circuit Output Voltage	+15	V
Max. Current for Thermoelectric Cooler	2.2	Α
Output Voltage for Fan	12	V
Control Voltage Adjustment Range	0 to +0.9	V
Weight	1.1	kg

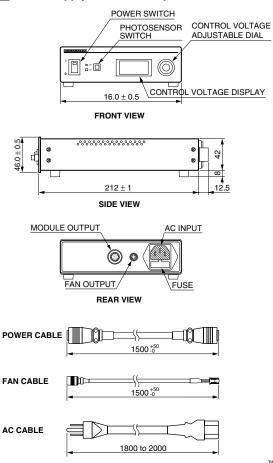

Options (Unit: mm)

1 Heatsink with Fan A7423


2 Power Supply Unit with Temperature Control M9012



TACCA0148EA


TACCA0188ED

5 C-mount Adapter A7413

6 Power Supply Unit with Temperature Control C8137-02

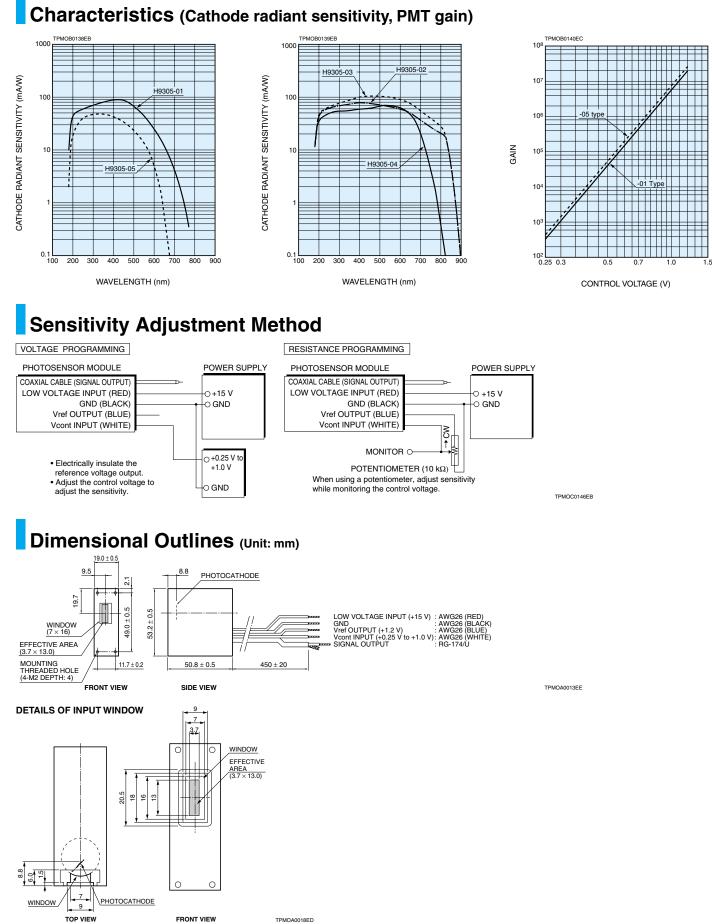
Compact Side-on PMT Photosensor Modules H9305 Series

The H9305 series photosensor modules contain a high-voltage power supply circuit and a 13-mm (1/2") diameter side-on photomultiplier tube in a compact aluminum housing. The 13-mm (1/2") side-on photomultiplier tube has a reflection mode photocathode that delivers high quantum efficiency at wavelengths above 600 nm, an adequate gain of up to 10^7 and fast time response. High S/N ratio can be obtained even when measuring extremely low level light at high speeds.

The H9305 series uses a Cockcroft-Walton circuit with low power consumption. Five types of photomultiplier tubes are provided as standard lineups to meet various needs for spectral response range. Flexible cables are used for easy installation in equipment.

Product Variations

Type No.	Spectral Response	Features
H9305-01	185 nm to 750 nm	High sensitivity in UV to visible range
H9305-02	185 nm to 900 nm	For general applications in UV to near IR range
H9305-03	185 nm to 900 nm	High sensitivity in UV to near IR range
H9305-04	185 nm to 830 nm	Low dark current in UV to near IR range
H9305-05	185 nm to 650 nm	For general applications in UV to visible range


Specifications

	Parameter				H9305 Series			Unit
Su	ffix		-01	-02	-03	-04	-05	_
Inp	out Voltage				+11.5 to +15.5		•	V
Ма	x. Input Voltage				+18			V
Ма	x. Input Current				7			mA
Ma	x. Output Signal Current				10			μA
Ma	x. Control Voltage			+1.2 (I	nput impedance	: 1 MΩ)		V
Rec	commended Control Voltage Adjustme	ent Range			+0.25 to +1.0		V mm 340 nm 20 μA/Im 5	
Eff	ective Area	active Area 3.7 × 13.0					mm	
Se	nsitivity Adjustment Range				1: 10 ⁴			—
Pe	ak Sensitivity Wavelength		420	400	450	530	340	nm
	Luminous Sensitivity	Min.	80	200	350	140	20	A /lm
ge	Luminous Gensitivity	Тур.	120	300	500	200	40	μΑ/ΙΠ
Cathode	Blue Sensitivity Index (CS 5-58)	Тур.	10	—	—	_	5	—
ő	Red/White Ratio	Тур.	_	0.3	0.4	0.15	—	—
	Radiant Sensitivity *1	Тур.	90	77	105	70	48	mA/W
	Luminous Sensitivity *2	Min.	100	400	1000	300	50	A/Im
e		Тур.	700	2000	2000	700	300	Aviiii
Anode	Radiant Sensitivity *1 *2	Тур.	$5.2 imes10^5$	$5.2 imes10^5$	$4.2 imes10^5$	$2.5 imes10^5$	$3.6 imes10^5$	A/W
∢	Dark Current *2 *3	Тур.	1	1	2	0.1	0.5	nA
		Max.	10	10	10	1	5	ПА
Ris	e Time *2	Тур.			1.4			ns
Rip	ple Noise *2 *4 (peak to peak)	Max.			0.5			mV
Se	ttling Time *5	Max.			10			S
Эр	erating Ambient Temperature	e *6			+5 to +50			°C
Sto	orage Temperature *6				-20 to +50			°C
We	eight				110			g

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.0 V *3: After 30 minutes storage in darkness

*4: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 M Ω , Load capacitance = 22 pF

*5: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *6: No condensation

Side-on PMT **Photosensor Modules H7732 Series**

The H7732 series photosensor modules consist of a 28-mm (1-1/8") diameter side-on photomultiplier tube and a high-voltage power supply. These side-on photomultiplier tubes have long been used for spectroscopic applications and provide high gain and high sensitivity. Five types of photomultiplier tubes are provided as standard lineups to meet various needs for spectral response range. Connectors are used for power input and signal output. By selecting cables in convenient length, the H7732 can be easily installed inside equipment or removed from equipment.

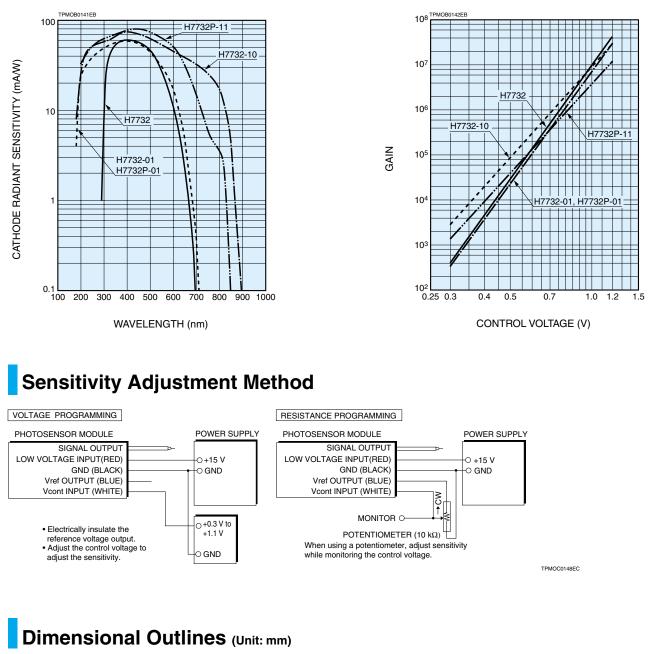
The H7732 is a general-purpose type and the H7732-01 is a low-noise type. The H7732-10 is sensitive over a wide range from UV to near infrared and has particularly high sensitivity in wavelengths above 600 nm. The H7732P-01 and H7732P-11 are selected as low dark count types ideal for photon counting and low-light-level measurement.

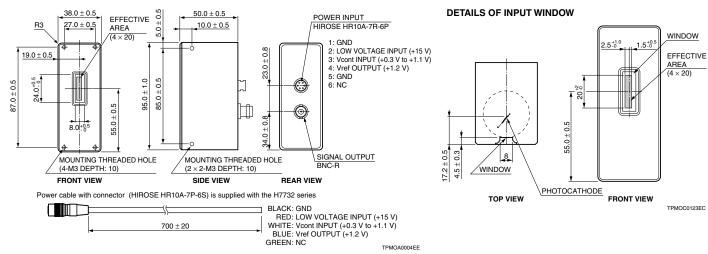
Product Variations

Type No.	Spectral Response	Features		
H7732	300 nm to 650 nm	For general applications in visible range		
H7732-01	185 nm to 680 nm	Low noise in UV to visible range		
H7732-10	185 nm to 900 nm	High sensitivity in UV to near IR range.		
H//32-10	165 1111 10 900 1111	Uses photomultiplier tube with meshless grid for excellent uniformity.		
H7732P-01	185 nm to 680 nm	For photon counting		
H7732P-11	H7732P-11 185 nm to 850 nm			

Specifications

	Parameter		H7732	H7732-01	H7732-10	H7732P-01	H7732P-11	Unit	
Inp	ut Voltage		+11.5 to +15.5						
Ma	x. Input Voltage				+18			V	
Ma	x. Input Current				40			mA	
Ma	x. Output Signal Current				100			μA	
Ma	x. Control Voltage		+1.2 (Input impedance 100 k Ω)				V		
Rec	ommended Control Voltage Adjustme	ent Range			+0.3 to +1.1			V	
Eff	ective Area				4 × 20		mm		
Se	nsitivity Adjustment Range				1: 10 ⁴				
Pe	ak Sensitivity Wavelength			4	00		430	nm	
	Luminous Sensitivity	Min.	30	40	140	40	140	\ //ma	
de		Тур.	60	60	250	60	200	μA/Im	
Cathode	Blue Sensitivity Index (CS 5-58)	Тур.	7.1	6.4	—	6.4	—		
Sa	Red/White Ratio	Тур.	—	—	0.3	—	0.15		
	Radiant Sensitivity *1	Тур.	60	60	74	60	80	mA/W	
	Luminous Sensitivity *2	Min.	50	200	400	200	300	A/Im	
	Eurimous Gensitivity -	Тур.	600	400	2500	400	700	Aviin	
e	Radiant Sensitivity *1 *2	Тур.	6.0 × 10 ⁵	$4.0 imes10^5$	$7.4 imes10^5$	$4 imes 10^5$	$2.8 imes10^5$	A/W	
Anode	Dark Current *2 *3	Тур.	5	0.1	3	0.1	0.2	nA	
∢		Max.	50	2	50	0.5	1	ΠA	
	Dark Count *3 *4	Тур.	—	—		30	80	s ⁻¹	
	Dank Gount 's '	Max.	—	—		80	200	5	
Ris	e Time *2	Тур.			2.2			ns	
Rip	ple Noise *2 *5 (peak to peak)	Max.			0.5			mV	
Se	ttling Time *6	Max.			0.2			S	
Ор	erating Ambient Temperature	e *7			+5 to +45			°C	
Sto	orage Temperature *7				-20 to +50			°C	
We	eight				220			g	


*1: Measured at the peak sensitivity wavelength *3: After 30 minutes storage in darkness *2: Control voltage = +1.0 V


*4: Control voltage: Plateau voltage

*5: Cable RG-174/U, Cable length 450 mm, load resistance = 1 M Ω , load capacitance = 22 pF

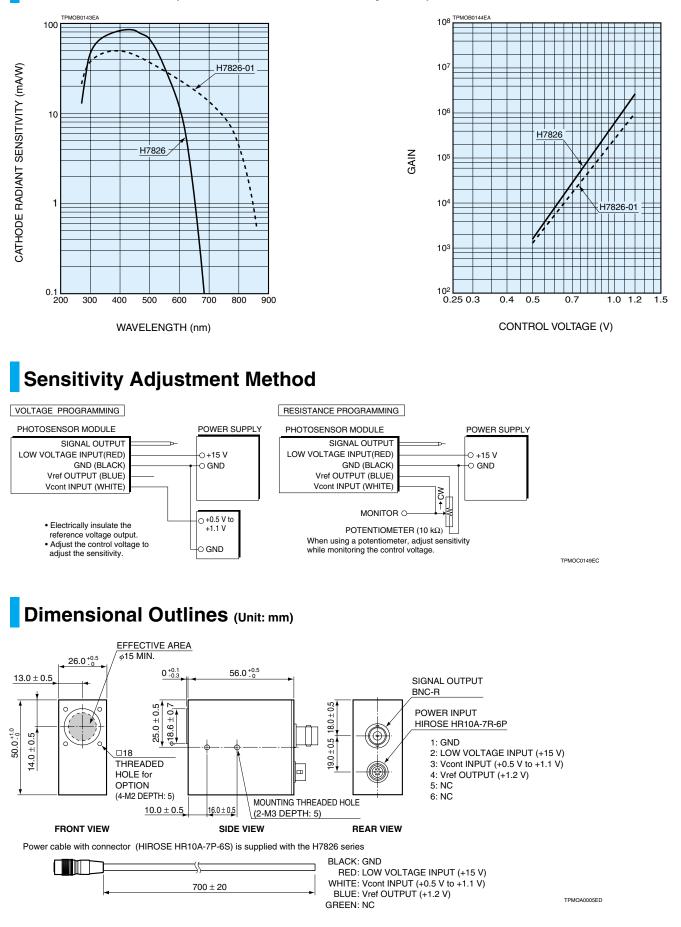
6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.

Compact Head-on PMT Photosensor Modules H7826 Series

The H7826 series photosensor modules consist of a 19-mm (3/4") diameter head-on photomultiplier tube and a high-voltage power supply circuit. The length of the photomultiplier tube used here is short compared to other photomultiplier tubes of the same diameter, making it compact even though it has a large light input diameter of 15 mm. The H7826 also has excellent resistance to vibration and shock compared to other photomultiplier tubes, making it ideal for use in portable equipment.

Product Variations

Type No.	Spectral Response	Features
H7826	300 nm to 650 nm	For general applications in visible range
H7826P		For photon counting
H7826-01	300 nm to 850 nm	For general applications in visible to near IR range
H7826P-01	300 1111 10 850 1111	For photon counting


Specifications

	Parameter		H7826	H7826-01	H7826P	H7826P-01	Unit	
Inp	ut Voltage			+11.5 t	o +15.5) +15.5		
Ма	x. Input Voltage			+	18		V	
Ma	x. Input Current			4	0		mA	
Ma	x. Output Signal Current			10	00		μA	
Ma	x. Control Voltage			+1.2 (Input imp	edance 100 k Ω)		V	
Rec	ommended Control Voltage Adjustmer	nt Range		+0.5 t	o +1.1	V		
Eff	ective Area			ϕ	15		mm	
Se	nsitivity Adjustment Range			1:	10 ³	1		
Pea	ak Sensitivity Wavelength		420	380	420	380	nm	
	Luminous Sensitivity	Min.	60	80	60	80	μ A /Im	
de		Тур.	90	120	90	120	μ-νιπ	
Cathode	Blue Sensitivity Index (CS 5-58)	Тур.	10.5	_	10.5	_		
ပိ	Red/White Ratio	Тур.	—	0.2	—	0.2	—	
	Radiant Sensitivity *1	Тур.	85	49	85	49	mA/W	
	Luminous Sensitivity *2	Min.		10	-	A/Im		
		Тур.	50	30	-	_	Aviiii	
	Radiant Sensitivity *1 *2	Тур.	$4.7 imes10^4$	$1.3 imes 10^{4}$		<u> </u>	A/W	
Anode	Dark Current *2 *3	Тур.		3		3	nA	
And		Max.	:	20	2	20	IIA	
	Gain *2	Min.		_	$1.8 imes10^6$	1 × 10 ⁶	—	
	Dark Count *3 *4	Тур.			200	2000	s ⁻¹	
	Dark Count	Max.	—		500	3500	5	
Ris	e Time *2	Тур.	1.		.5		ns	
Rip	ple Noise *2 *5 (peak to peak)	Max.	0.		.5		mV	
Set	ttling Time *6	Max.		0	.2		S	
Ор	erating Ambient Temperature	*7		+5 to	o +45	°C		
Sto	orage Temperature *7			-20 to	o +50	°C		
We	eight			7	0		g	

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.0 V *3: After 30 minutes storage in darkness

*4: Control voltage: Plateau voltage *5: Cable RG-174/U, Cable length 450 mm, load resistance = 1 MΩ, load capacitance = 22 pF

*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *7: No condensation

Characteristics (Cathode radiant sensitivity, Gain)

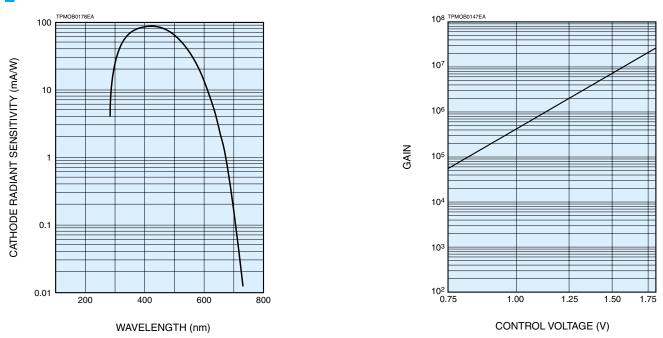
Head-on PMT Photosensor Module H8443

The H8443 is a photosensor module that integrates a 25-mm (1") diameter head-on photomultiplier tube with a high-voltage power supply circuit. The H8443 has a large effective photocathode area of 22 mm diameter and features fast time response.

Product Variations

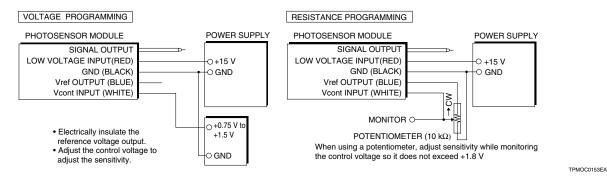
Type No.	Spectral Response	Features
H8443	300 nm to 650 nm	For visible range

Specifications

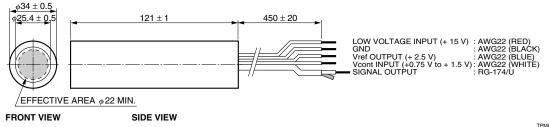

	Parameter		H8443	Unit
Inp	ut Voltage		+11.5 to +15.5	V
Ма	x. Input Voltage		+18	V
Ма	x. Input Current		40	mA
Ма	x. Output Signal Current		100	μA
Ма	x. Control Voltage		+1.8 (Input impedance 100 k Ω)	V
Rec	ommended Control Voltage Adjustme	nt Range	+0.75 to +1.50	V
Effe	ective Area		φ22	mm
Sei	nsitivity Adjustment Range		1: 10 ²	
Pea	ak Sensitivity Wavelength		420	nm
Cathode	Luminous Sensitivity	Min.	70	μA/lm
	Edminous Genantivity	Тур.	95	μΑνιπ
Cath	Blue Sensitivity Index (CS 5-58)	Тур.	11	—
0	Radiant Sensitivity *1	Тур.	88	mA/W
	Luminous Sensitivity *2	Min.	20	A/Im
e		Тур.	190	- Aviin
Anode	Radiant Sensitivity *1 *2	Тур.	1.7 × 10 ⁵	A/W
∢	Dark Current *2 *3	Тур.	2	
		Max.	15	nA
Ris	e Time *2	Тур.	1.6	ns
Rip	ple Noise *2 *4 (peak to peak)	Max.	1	mV
Set	tling Time *5	Max.	0.2	S
Ор	erating Ambient Temperature	e *6	+5 to +45	°C
Sto	rage Temperature *6		-20 to +50	°C
We	ight		210	g

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.25 V *3: After 30 minutes storage in darkness

*4: Cable RG-174/U, Cable length 450 mm, load resistance = 1 M Ω , load capacitance = 22 pF


*5: The time required for the output to reach a stable level following a change in the control voltage from +1.25 V to +0.75 V.

*6: No condensation



Characteristics (Cathode radiant sensitivity, Gain)

Sensitivity Adjustment Method

Dimensional Outline (Unit: mm)

TPMOA0017EA

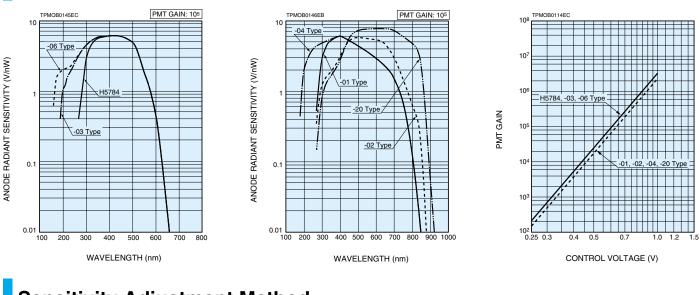
Metal package PMT Photosensor Modules H5784 Series

The H5784 series photosensor modules are comprised of a metal package photomultiplier tube, a low-power consumption high-voltage power supply and a low noise amplifier. The electrical current from the photomultiplier tube is converted to a voltage by an amplifier for easy signal processing. The H5784 is highly resistant to noise since the amplifier is installed near the anode output pin of the photomultiplier tube. The amplifier feedback resistance of 1 M Ω allows a current-to-voltage conversion factor of 1 V/µA, and covers a frequency bandwidth from DC to 20 kHz.

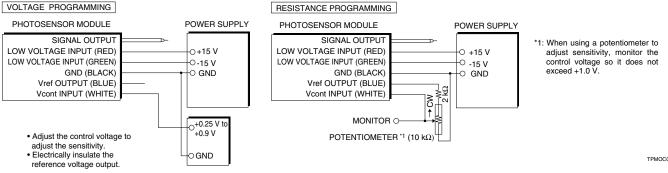
Product Variations

Type No.	Spectral Response	Current-to-voltage Conversion Factor	Frequency Bandwidth	Features
H5784	300 nm to 650 nm			For general applications in visible range
H5784-01	300 nm to 850 nm			For general applications in visible to near IR range
H5784-02	300 nm to 880 nm			High sensitivity in near IR range
H5784-03	185 nm to 650 nm	1 V/μA	DC to 20 kHz	For UV to visible range
H5784-04	185 nm to 850 nm			For UV to near IR range
H5784-06	185 nm to 650 nm			For UV to visible range (synthetic silica window) with higher sensitivity below 300 nm than -03 type
H5784-20	300 nm to 920 nm			Infrared-extended multialkali photocathode with enhanced sensitivity

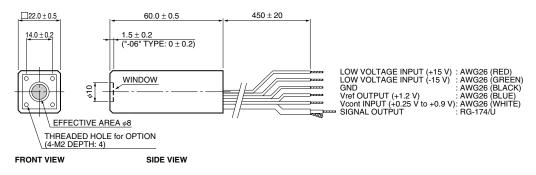
Specifications


	Parameter			H5784	Series		Unit		
Suf	ïx		None/-03/-06	-01/-04	-02	-20	_		
Inpu	it Voltage			±11.5 to	o ±15.5		V		
Max	. Input Voltage			±1	8		V		
Max	. Input Current		+9/-1						
Max	. Output Signal Voltage			+10 (Load resi	stance 10 kΩ)		V		
Max	c. Control Voltage			+1.0 (Input impe	edance 100 k Ω)		V		
Reco	ommended Control Voltage Adjustme	ent Range		+0.25 1	io +0.9		V		
Effe	ctive Area			ϕ	8		mm		
Ser	sitivity Adjustment Range			1: 1	104				
Pea	k Sensitivity Wavelength		420	400	500	630	nm		
	Luminous Sensitivity	Min.	40	80	200	350	μA/Im		
Cathode	Editifious Censitivity	Тур.	70	150	250	500	μΑ/ΙΠ		
l p	Blue Sensitivity Index (CS 5-58)	Тур.	8	—	—		—		
ပိ	Red/White Ratio	Тур.	—	0.2	0.25	0.45			
	Radiant Sensitivity *1	Тур.	62	60	58	78	mA/W		
	Luminous Sensitivity *2	Min.	$1.0 imes 10^{7}$	$1.5 imes 10^7$	$2.5 imes10^7$	$3.5 imes 10^{7}$	V/lm		
e	Laminous Sonolavity	Тур.	$5.0 imes 10^7$	$7.5 imes 10^7$	$1.25 imes10^{8}$	$2.5 imes10^8$	v/IIII		
Anode	Radiant Sensitivity *1 *2	Тур.	43	30	29	39	V/nW		
<	Voltage Output Depending	Тур.	0.2	0.4	2	2	mV		
	on PMT Dark Current *2 *3 *4	Max.	2	4	20	20	IIIV		
Cur	rent-to-Voltage Conversion	Factor		1			V/μA		
Offs	set Voltage	Тур.		<u>+</u>	3		mV		
Ripp	ble Noise *2 *5 (peak to peak)			2					
Set	ling Time *6	Max.		2	2		S		
	erating Ambient Temperature	e *7		+5 to	+50		°C		
Sto	rage Temperature *7			-20 to	+50		°C		
We	ght			10	00		g		

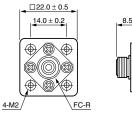
*1: Measured at the peak sensitivity wavelength *2: Control voltage = +0.8 V *3: After 30 minutes storage in darkness


*4: Output of anode dark current *5: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 MΩ, Load capacitance = 22 pF

*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *7: No condensation



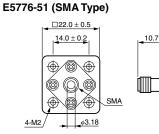
Sensitivity Adjustment Method



Dimensional Outlines (Unit: mm)

Options (Optical Fiber Adapter) (Unit: mm)

E5776 (FC Type)


FRONT VIEW

SIDE VIEW

 3.5 ± 0.2

TACCA0055EA

FRONT VIEW

3.0 SIDE VIEW TACCA0239EA

5.0

TPMOC0154EC

TPMOA0012EC

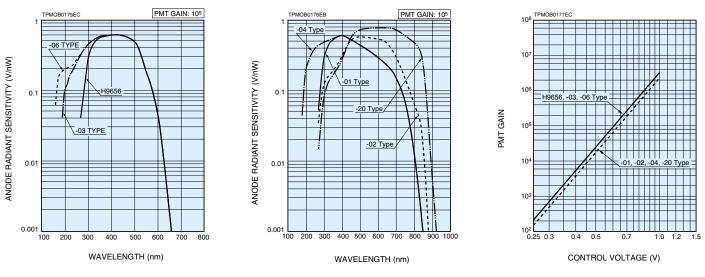
Metal Package PMT Photosensor Modules H9656 Series

The H9656 series photosensor modules incorporate a metal package photomultiplier tube, a high-voltage power supply circuit with low power consumption and a low noise amplifier. The photomultiplier tube output current is converted into a voltage output for easy signal processing.

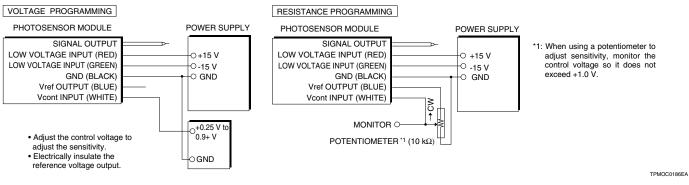
The internal amplifier is installed near the anode output pin of the photomultiplier tube to minimize the effects of external noise. The amplifier feedback resistance of 100 k Ω allows a current-to-voltage conversion coefficient of 0.1 V/µA and covers a wide frequency bandwidth from DC to 200 kHz.

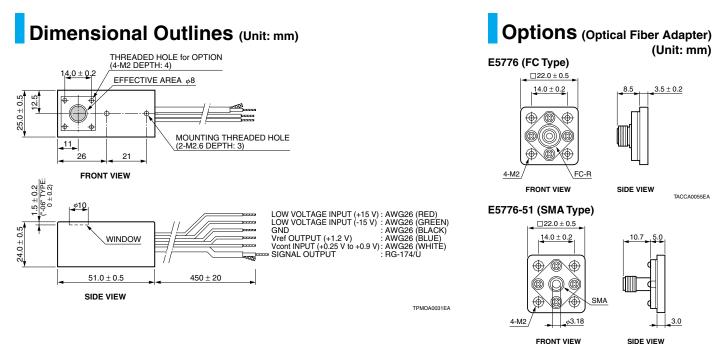
Product Variations

	Spectral Beenenee	Spectral Response Current-to-voltage F Conversion Factor E		Features		
туре но.	Spectral nesponse	Conversion Factor	Bandwidth	reduies		
H9656	300 nm to 650 nm			For general applications in visible range		
H9656-01	300 nm to 850 nm			For general applications in visible to near IR range		
H9656-02	300 nm to 880 nm			High sensitivity in near IR range		
H9656-03	185 nm to 650 nm	0.1 V/μA	DC to 200 kHz	For UV to visible range		
H9656-04	185 nm to 850 nm			For UV to near IR range		
H9656-06	185 nm to 650 nm			For UV to visible range (synthetic silica window) with higher sensitivity below 300 nm than -03 type		
H9656-20	300 nm to 920 nm			Infrared-extended multialkali photocathode with enhanced sensitivity		


Specifications

	Parameter			H9656	Series		Unit
Suf	fix		None/-03/-06	-01/-04	-02	-20	_
Inp	ut Voltage			±11.5	to ±15.5	$ \begin{array}{c} -20 \\ -20 $	V
Ма	x. Input Voltage			±	18		V
Ма	x. Input Current			+3	8/-8		mA
Ма	x. Output Signal Voltage			+10 (Load res	sistance 10 k Ω)		V
Ма	x. Control Voltage			+1.0 (Input imp	edance 100 kΩ)		V
Rec	ommended Control Voltage Adjustme	ent Range		+0.25	to +0.9		V
Effe	ective Area			9	8		mm
Sei	nsitivity Adjustment Range			1:	104		_
Pea	ak Sensitivity Wavelength		420	400	500	630	nm
	Luminous Sensitivity	Min.	40	80	200	350	\//m
qe	Luminous Sensitivity	Тур.	70	150	250	500	μ A /lm
Cathode	Blue Sensitivity Index (CS 5-58)	Тур.	8		_	_	
Sa	Red/White Ratio	Тур.	—	0.2	0.25	0.45	_
	Radiant Sensitivity *1	Тур.	62	60	58	78	mA/W
	Luminous Sensitivity *2	Min.	$1.0 imes 10^{6}$	$1.5 imes10^6$	$2.5 imes10^{6}$	$3.5 imes10^6$	V/lm
Ð		Тур.	$5.0 imes10^{6}$	$7.5 imes10^{6}$	1.25×10^{7}	2.5×10^{7}	V/III
Anode	Radiant Sensitivity *1 *2	Тур.	4.3	3.0	2.9	3.9	V/nW
∢	Voltage Output Depending	Тур.	0.02	0.04	0.2	0.2	mV
	on PMT Dark Current *2 *3 *4	Max.	0.2	0.4	2.0	2.0	IIIV
Cu	rrent-to-Voltage Conversion	Factor		C).1		V/μA
Off	set Voltage	Тур.		=	±1		mV
Rip	ple Noise *2 *5 (peak to peak)	Max.		1	.5		mV
Set	ttling Time *6	Max.	0.2		S		
Ор	erating Ambient Temperature	e *7		+5 te	o +45		°C
Sto	orage Temperature *7			-20 t	o +50		°C
We	eight			ę	90		g


*4: Output of anode dark current *5: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 MΩ, Load capacitance = 22 pF


*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *7: No condensation

Characteristics (Anode radiant sensitivity, PMT gain)

Sensitivity Adjustment Method

SIDE VIEW TACCA0239EA

Compact Side-on PMT Photosensor Modules H9306/H9307 Series

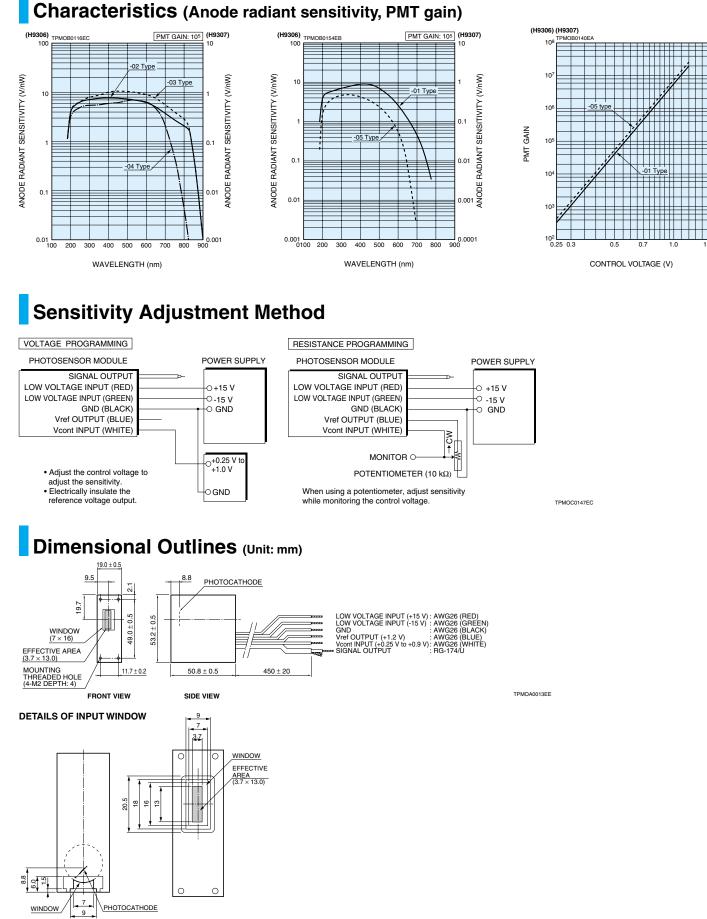
The H9306/H9307 series photosensor modules incorporate a 13-mm (1/2") diameter side-on photomultiplier tube, a high-voltage power supply circuit and a low noise amplifier. Two types of amplifiers are available with a current-to-voltage conversion factor of 1 V/ μ A or 0.1 V/ μ A and a frequency bandwidth of 20 kHz or 200 kHz. The H9306/H9307 series uses a Cockcroft-Walton circuit with low power consumption.

Five types of photomultiplier tubes are provided as standard lineups to meet various needs for spectral response range. Flexible cables are used for easy installation equipment.

Product Variations

		Type No.			Current-to-Voltage	Frequency	Features
185 nm to 750 nm	185 nm to 900 nm	185 nm to 900 nm	185 nm to 830 nm	185 nm to 650 nm	Conversion Factor	Bandwidth	realures
H9306-01	H9306-02	H9306-03	H9306-04	H9306-05	1 V/μA	DC to 20 kHz	Low power
H9307-01	H9307-02	H9307-03	H9307-04	H9307-05	0.1 V/μA	DC to 200 kHz	consumption

Specifications


Parameter			H9306 / H9307 Series					Unit
Suffix			-01	-02	-03	-04	-05	
Input Voltage			±11.5 to ±15.5					V
Max. Input Voltage			±18					V
Max. Input Current			+9/-1 (H9306), +15/-8 (H9307)					mA
Max. Control Voltage			+1.2 (Input Impedance: 1 MΩ)					V
Recommended Control Voltage Adjustment Range			+0.25 to +1.0					V
Effective Area			3.7 × 13.0					mm
Sensitivity Adjustment Range			1: 104					—
Peak Sensitivity Wavelength			420	400	450	530	340	nm
Cathode	Luminous Sensitivity	Min.	80	200	350	140	20	μA/Im
		Тур.	120	300	500	200	40	
	Blue Sensitivity Index (CS 5-58)		10	—	—	—	5	—
	Red/White Ratio	Тур.	—	0.3	0.4	0.15	—	—
	Radiant Sensitivity *1	Тур.	90	77	105	70	48	mA/W
H9	H9306 Series (with internal 20 kHz amp)							
Anode	Luminous Sensitivity *2	Min.	1.0 × 10 ⁸	4.0 × 10 ⁸	1.0 × 10 ⁹	3.0 × 10 ⁸	5.0 × 10 ⁷	V/lm
		Тур.	$7.0 imes10^8$	$2.0 imes 10^{9}$	$2.0 imes 10^{9}$	$7.0 imes10^8$	3.0 × 10 ⁸	
	Radiant Sensitivity *1 *2	Тур.	520	520	420	250	360	V/nW
	Voltage Output Depending	Тур.	1	1	2	0.1	0.5	mV
	on PMT Dark Current *2 *3 *4	Max.	10	10	10	1	5	
Max. Output Signal Voltage			+10 (Load resistance 10 kΩ)					V
	rrent-to-Voltage Conversion							V/µA
H9307 Series (with internal 200 kHz amp)								
Anode	Luminous Sensitivity *2	Min.	1.0×10^7	4.0 × 10 ⁷	1.0 × 10 ⁸	3.0 × 10 ⁷	5.0 × 10 ⁶	V/lm
		Тур.	7.0 × 10 ⁷	2.0 × 10 ⁸	2.0 × 10 ⁸	7.0 × 10 ⁷	3.0 × 10 ⁷	
	Radiant Sensitivity *1 *2	Тур.	52	52	42	25	36	V/nW
	Voltage Output Depending	Тур.	0.1	0.1	0.2	0.01	0.05	mV
Ma	on PMT Dark Current *2 *3 *4	Max.	1	1	l a a di va a i a ta ma a i di	0.1	0.5	V
Max. Output Signal Voltage			+1 (Load resistance 10 kΩ) 0.1					ν V/μΑ
Current-to-Voltage Conversion Factor								V/μΑ
Off	sat Valtaga	Turn	H9306 / H9307 Series ±3					mV
Offset Voltage Typ. Ripple Noise *2 *5 (peak to peak) Max.			0.8					mV
Settling Time *6 Max.			10					S
Operating Ambient Temperature *7			+5 to +50					°C
Storage Temperature *7			-20 to +50					
	light		110					g
$\frac{110}{100}$								9

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.0 V *3: After 30 minutes storage in darkness

*4: Output of anode dark current

*5: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 M Ω , Load capacitance = 22 pF

*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *7: No condensation

FRONT VIEW

TPMOA0018ED

TOP VIEW

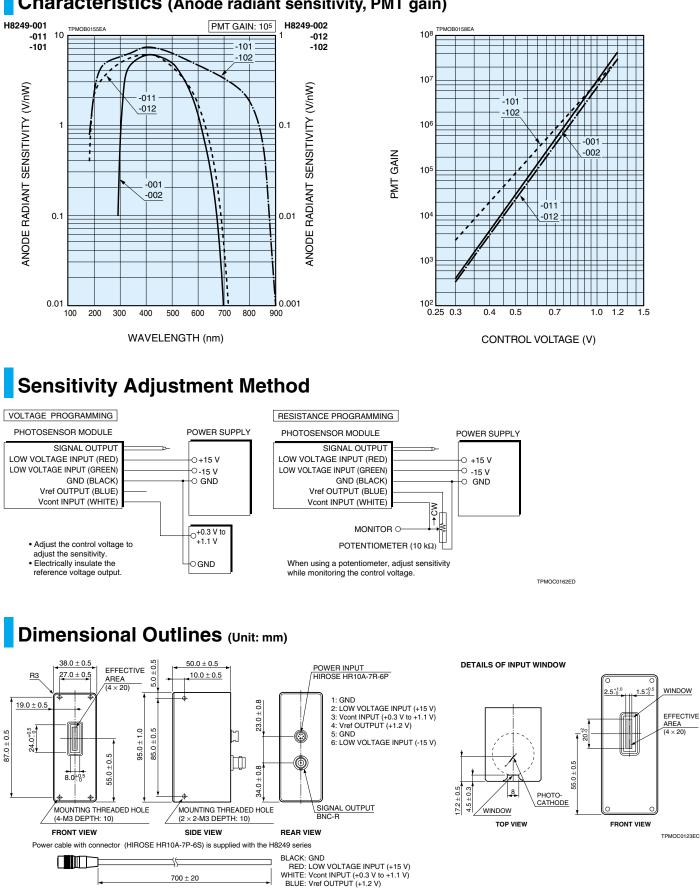
1.5

Side-on PMT Photosensor Modules H8249 Series

The H8249 series photosensor modules incorporate a 28-mm (1-1/8") diameter side-on photomultiplier tube, a high-voltage power supply circuit and a low noise amplifier. Two types of amplifiers are available with a current-to-voltage conversion factor of 1 V/ μ A or 0.1 V/ μ A and a frequency bandwidth of DC to 20 kHz or DC to 200 kHz. Three types of photomultiplier tubes are provided as standard lineups for general applications in the visible range, UV to visible range requiring low-noise, and UV to near IR range.

Product Variations

Type No.	Spectral Response	Current-to-Voltage Conversion Factor	Frequency Bandwidth	Features
H8249-001	300 nm to 650 nm			For general applications in visible range
H8249-011	185 nm to 680 nm	1 V/μA	DC to 20 kHz	For general applications in UV to visible range
H8249-101	185 nm to 900 nm			High sensitivity in UV to near IR range. Uses photomultiplier tube with meshless grid for excellent uniformity.
H8249-002	300 nm to 650 nm		DC to 200 kHz	For general applications in visible range
H8249-012	185 nm to 680 nm	0.1 V/μA		For general applications in UV to visible range
H8249-102	H8249-102 185 nm to 900 nm			High sensitivity in UV to near IR range. Uses photomultiplier tube with meshless grid for excellent uniformity.


Specifications

_	Parameter			H8249 Series		Unit	
Su	ffix		-001 / -002	-011 / -012	-101 / -102		
Inp	out Voltage			±11.5 to ±15.5		V	
Ma	x. Input Voltage			V			
	Max. Input Current		+45/-1 (-00)1/-011/-101), +55/-15 (-002	2/-012/-102)	mA	
Ma	x. Control Voltage		+	1.2 (Input Impedance 100 k	Ω)	V	
Rec	ommended Control Voltage Adjustme	ent Range		+0.3 to +1.1		V	
	ective Area			4 × 20		mm	
Se	nsitivity Adjustment Range			1: 104		_	
Pea	ak Sensitivity Wavelength			400		nm	
	Luminous Sensitivity	Min.	30	40	140	μA/lm	
de	,	Тур.	60	60	250	μΑνιπ	
Cathode	Blue Sensitivity Index (CS 5-58)	Тур.	7.1	6.4	8.0		
Ca	Red/White Ratio	Тур.			0.3		
	Radiant Sensitivity *1	Тур.	60	60	74	mA/W	
Su	ffix (with internal 20 kHz an	np)	-001	-011	-101		
	Luminous Sensitivity *2	Min.	$5.0 imes 10^{7}$	$2.0 imes 10^{8}$	$4.0 imes10^{8}$	V/lm	
ę		Тур.	6.0 × 10 ⁸	4.0 × 10 ⁸	$2.5 imes 10^{9}$.,	
Anode	Radiant Sensitivity *1 *2	Тур.	600	400	740	V/nW	
Ā	Voltage Output Depending	Тур.	5	0.1	3	mV	
	on PMT Dark Current *2 *3 *4	Max.	50	2	50	V	
	x. Output Signal Voltage		+10 (Load resistance 10 kΩ)				
	rrent-to-Voltage Conversion			1		V/µA	
Su	ffix (with internal 200 kHz a		-002	-012	-102		
	Luminous Sensitivity *2	Min.	$5.0 imes 10^{6}$	2.0 × 10 ⁷	4.0 × 10 ⁷	V/lm	
de de		Тур.	6.0 × 10 ⁷	4.0 × 10 ⁷	$2.5 imes10^{8}$		
Anode	Radiant Sensitivity *1 *2	Тур.	60	40	74	V/nW	
∢	Voltage Output Depending	Тур.	0.5	0.01	0.3	— mV	
	on PMT Dark Current *2 *3 *4	Max.	5	0.2	5		
	x. Output Signal Voltage		+10 (Load resistance 10 kΩ)				
Cu	rrent-to-Voltage Conversion	Factor		0.1		V/µA	
				H8249 series			
	set Voltage	Тур.		<u>±3</u> 0.6		mV	
	ple Noise *2 *5 (peak to peak)			mV			
	ttling Time *6	Max.	0.2			S	
	erating Ambient Temperatu	Ire *7		+5 to +45		°C	
	prage Temperature *7			-20 to +50		℃	
	eight		-	220		g	
*1 · M	leasured at the peak sensitivity	wavelend	th *2: Control voltage = +1.	0 V *3: After 30 minutes stor	rade in darkness		

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.0 V *3: After 30 minutes storage in darkness

*4: Output of anode dark current *5: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 MΩ, Load capacitance = 22 pF

*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V. *7: No condensation

Characteristics (Anode radiant sensitivity, PMT gain)

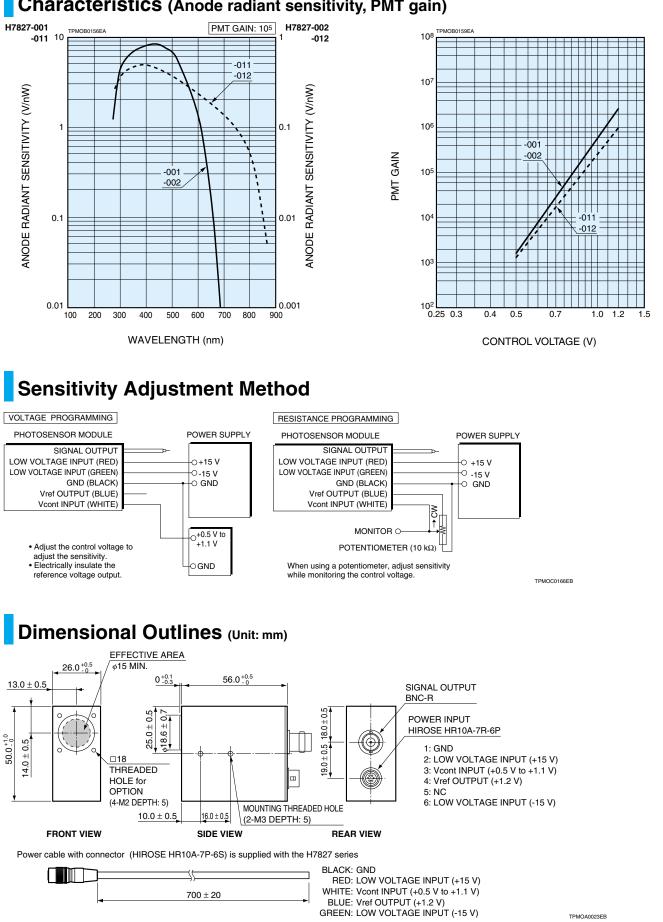
GREEN: LOW VOLTAGE INPUT (-15 V)

Compact Head-on PMT Photosensor Modules H7827 Series

The H7827 series photosensor modules incorporate a 19-mm (3/4") diameter head-on photomultiplier tube, a high-voltage power supply circuit and a low noise amplifier. Two types of amplifiers are available with a current-to-voltage conversion factor of 1 V/ μ A or 0.1 V/ μ A and a frequency bandwidth of DC to 20 kHz or DC to 200 kHz. Two types of photomultiplier tubes with different spectral response characteristics are provided for measurement in the visible range or visible to near IR range.

Product Variations

Type No.	Spectral Response	Current-to-Voltage Conversion Factor	Frequency Bandwidth	Features
H7827-001	300 nm to 650 nm	1 V/uA	DC to 20 kHz	For general applications in visible range
H7827-011	300 nm to 850 nm	ι ν/μΑ		For visible to near IR range
H7827-002	300 nm to 650 nm	0.1.1//	DC to 200 kHz	For general applications in visible range
H7827-012	300 nm to 850 nm	0.1 V/μA		For visible to near IR range


Specifications

Suffix -001 / -002 -011 / -012 - Input Voltage ±11.5 to ±15.5 V Max. Input Current ±18 V Max. Control Voltage +45/-1 (-001/-011), +50/-8 (-002/-012) mA Max. Control Voltage Adjustment Range +1.2 (Input Impedance 100 kΩ) V Recommended Control Voltage Adjustment Range +1.2 (Input Impedance 100 kΩ) V Effective Area φ15 mm Sensitivity Mayelength 420 380 nm Bite Sensitivity Wavelength 420 380 mM Bite Sensitivity Mavelength 420 380 mM Bite Sensitivity Max (S5.58) Typ. 10.5 - - Red/White Rataio Typ.		Parameter		H7827	Series	Unit
Max. Input Voltage ±18 V Max. Input Current +45/-1 (-001/-011), +50/-8 (-002/-012) mA Max. Control Voltage +1.2 (Input Impedance 100 kΩ) V Recommended Control Voltage Adjustment Range +1.2 (Input Impedance 100 kΩ) V Becommended Control Voltage Adjustment Range +1.1 V Effective Area 0.15 mm Sensitivity Adjustment Range 1:03 - Peak Sensitivity Wavelength 420 380 nm Uuminous Sensitivity Min. 60 80 µA/Im Blue Sensitivity Index (CS 5:58) Typ. - - - Red/White Ratio Typ. - 0.2 - - Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 - - Max. Dutp Ubgending on PMT Dark Current ** 3*4 Max. 20 mV - Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Current-to-Voltage Conversion Fa	Suf	ffix		-001 / -002	-011 / -012	
Max. Input Current +45/-1 (-001/-011), +50/-8 (-002/-012) mA Max. Control Voltage +1.2 (Input Impedance 100 kΩ) V Recommende Control Voltage Adjustment Range +1.2 (Input Impedance 100 kΩ) V Effective Area φ15 mm Sensitivity Adjustment Range 015 mm Luminous Sensitivity Min. 60 80 µA/Im 0 Luminous Sensitivity Min. 60 80 µA/Im 0 Blue Sensitivity Index (CS 5-58) Typ. - 0.2 - Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 -011 0 Uminous Sensitivity *1 Typ. 5.0 × 107 3.0 × 107 V/Im 10 × 10 ² Typ. 3 3 mV Max. 20 mV 0 Puttity t*1*2 Typ. 47 1.3 × 10 ² V/mW Max. 20 mV 3 3 3 mV Max. <td>Inp</td> <td>ut Voltage</td> <td></td> <td>±11.5 to</td> <td>V</td>	Inp	ut Voltage		±11.5 to	V	
Max. Control Voltage +1.2 (Input Impedance 100 kΩ) V Recommended Control Voltage Adjustment Range +0.5 to +1.1 V Effective Area φ15 mm Sensitivity Adjustment Range 1:10 ³ - Peak Sensitivity Wavelength 420 380 nm generativity Mayelength 420 380 mm Luminous Sensitivity Typ. 90 120 µA/lm Blue Sensitivity Index (CS 5-58) Typ. 10.5 - Red/White Ratio Typ. -001 011 mAW Suffix (with internal 20 kHz amp) -001 -011 - Voltage Output Depending on PMT Dark Current *2 *14 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V V/IµA Uminous Sensitivity *1 Typ. 5.0 × 10 ⁶ 3.0 × 10 ⁶ V/IµA Voltage Output Depending on PMT Dark Current *2 *14 Max. 20 012 V Generativity *1**2 Typ. 5.0 × 10 ⁶	Ma	Max. Input Voltage		±1	V	
Recommended Control Voltage Adjustment Range +0.5 to +1.1 V Effective Area φ15 mm Sensitivity Adjustment Range 1:10 ³ Peak Sensitivity Wavelength 420 380 nm uminous Sensitivity Min. 60 80 µA/Im Blue Sensitivity Index (CS 5-58) Typ. 10.5 - Red/White Ratio Typ. 90 120 µA/Im Uminous Sensitivity *1 Typ. 0.2 Red/White Ratio Typ. 0.2 Radiant Sensitivity *1 Typ. 85 49 mA/W Stuffix (with internal 20 kHz amp) -001 -011 -011 Vage Output Depending on PMT Dark Current *2*3*4 Max. 20 20 mV Max. 20 -012 Voltage Output Depending on PMT Dark Current *2*3*4 Max. 20 -012 Vage Output Depending on PMT Dark Current *2*3*4 Max. 2	Ma	x. Input Current		+45/-1 (-001/-011),	+50/-8 (-002/-012)	mA
Effective Area φ15 Sensitivity Adjustment Range 0.10 ³ Peak Sensitivity Wavelength 420 Bue Sensitivity Wavelength 420 Typ. 90 Bue Sensitivity Index (CS 5-58) Typ. Peak Sensitivity Index (CS 5-58) Typ. Peak Sensitivity Index (CS 5-58) Typ. Bue Sensitivity Index (CS 5-58) Typ. Peak Multice Ratio Typ. Peak Multice Ratio Typ. Peak Multice Ratio Typ. Bue Sensitivity *1 Typ. Peak Multice Ratio Typ. Peak Multice Ratio Typ. Bue Sensitivity *1 Typ. Max. Output Sensitivity *1*2 Min. Typ. 5.0 × 107 Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V/µA Min. Suffix (with internal 200 kHz amp) -002 Output Signal Voltage +10 (Load resistance 10 kΩ) V/µA Min. Suffix (with internal 200 kHz amp) -002 Output Signal Voltage +10 (Load re	Ma	x. Control Voltage		+1.2 (Input Impe	edance 100 kΩ)	V
Sensitivity Adjustment Range 1: 10 ³ — Peak Sensitivity Wavelength 420 380 nm Uuminous Sensitivity Min. 60 80 µA/Im Blue Sensitivity Index (CS 5:58) Typ. 90 120 µA/Im Blue Sensitivity Index (CS 5:58) Typ. - 0.2 - Radiant Sensitivity 1 Typ. 90 011 -011 Suffix (with internal 20 kHz amp) -001 -011 - Min. 1.0×10 ⁷ V/mW V/mW Voltage Output Depending on PMT Dark Current *2*3*4 Max. 20 20 mV mV Suffix (with internal 200 kHz amp) -002 -012 V/µA V/µA 20 20 W Querent *2*3*4 Max. 20 20 W V/µA V/µA Suffix (with internal 200 kHz amp) -002 -012 W V V Querent *2*3*4 Max. 2 0.3 0.3 V/µA V/µA Suffix (with internal 200 kHz amp) </td <td>Rec</td> <td>ommended Control Voltage Adjustm</td> <td>ent Range</td> <td>+0.5 to</td> <td>o +1.1</td> <td>V</td>	Rec	ommended Control Voltage Adjustm	ent Range	+0.5 to	o +1.1	V
Peak Sensitivity Wavelength 420 380 nm uminous Sensitivity Min. 60 80 µA/Im Bue Sensitivity Index (CS 5-58) Typ. 90 120 µA/Im Bue Sensitivity Index (CS 5-58) Typ. Radiant Sensitivity 1 Typ. 0.2 Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 -011 Uninous Sensitivity *1*2 Min. 1.0 × 107 1.0 × 107 V/mW Value Output Depending on PMT Dark Current *2*3*4 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA Suffix (with internal 200 kHz amp) -002 -012 V/μA Min. 1.0 × 106 1.0 × 106 V/μA Suffix (with internal 200 kHz amp) -002 V/μA 2 Min. 1.0 × 106 1.0 × 106 V/μA V/μA Suffix (with internal 200 kH	Effe	ective Area		ϕ	15	mm
Φ Luminous Sensitivity Min. 60 80 μA/lm Blue Sensitivity Index (CS 5-58) Typ. 10.5 Red/White Ratio Typ. 0.2 Red/White Ratio Typ. 0.2 Red/White Ratio Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 - - Luminous Sensitivity *1 Min. 1.0 × 107 1.0 × 107 V/lm Voltage Output Depending on PMT Dark Current *2*3*4 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V V/μA Suffix (with internal 200 kHz amp) -002 -012 - V/μA Max. Output Signal Voltage Min. 1.0 × 106 1.0 × 106 V/μA Suffix (with internal 200 kHz amp) -002 -012 - - Numinous Sensitivity *1*2 Typ. 5.0 × 106 3.0 × 106 V/μA Suffix (with internal 20	Sei	nsitivity Adjustment Range)	1:1	10 ³	_
θ Luminous Sensitivity Typ. 90 120 μ//m Blue Sensitivity Index (CS 5-58) Typ. 10.5	Pea	ak Sensitivity Wavelength		420	380	nm
Bue Sensitivity Index (CS 5-58) Typ. 10.5 Red/White Ratio Typ. 0.1 0.2 Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 Luminous Sensitivity *1 Typ. 85 49 mA/W Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 20 20 mV Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 20 20 mV Suffix (with internal 200 kHz amp) -002 1.0 × 10 ⁶ 1.0 × 10 ⁷ Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 20 20 mV Suffix (with internal 200 kHz amp) -002 -012 V/µA Suffix (with internal 200 kHz amp) -002 -012 Maint Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 2 <			Min.	60	80	\ /lm
Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 -011 Luminous Sensitivity *2 Min. 1.0 × 107 1.0 × 107 V/Im Radiant Sensitivity *1 Typ. 5.0 × 107 3.0 × 107 V/Im Radiant Sensitivity *1 *2 Typ. 47 13 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 20 20 mV Max. Output Signal Voltage Current-to-Voltage Conversion Factor 1 V/µA V/µA V/µA Suffix (with internal 200 kHz amp) -002 -012 V/µA V/µA Luminous Sensitivity *2 Min. 1.0 × 106 1.0 × 106 V/µA Suffix (with internal 200 kHz amp) -002 -012 V/µA Luminous Sensitivity *2 Min. 1.0 × 106 3.0 × 106 V/µM Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 2	de	Luminous Sensitivity	Тур.	90	120	μΑνιπ
Radiant Sensitivity *1 Typ. 85 49 mA/W Suffix (with internal 20 kHz amp) -001 -011 -011 Luminous Sensitivity *2 Min. 1.0 × 107 1.0 × 107 V/Im Radiant Sensitivity *1 Typ. 5.0 × 107 3.0 × 107 V/Im Radiant Sensitivity *1 *2 Typ. 47 13 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 20 20 mV Max. Output Signal Voltage Current-to-Voltage Conversion Factor 1 V/µA V/µA V/µA Suffix (with internal 200 kHz amp) -002 -012 V/µA V/µA Luminous Sensitivity *2 Min. 1.0 × 106 1.0 × 106 V/µA Suffix (with internal 200 kHz amp) -002 -012 V/µA Luminous Sensitivity *2 Min. 1.0 × 106 3.0 × 106 V/µM Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 2	tho	Blue Sensitivity Index (CS 5-58)	Тур.	10.5	—	—
Suffix (with internal 20 kHz amp) -001 -011 μ Luminous Sensitivity*2 Min. 1.0×107 1.0×107 V/Im Radiant Sensitivity*1*2 Typ. 5.0×107 3.0×107 V/Im Voltage Output Depending on PMT Dark Current*2*3*4 Typ. 47 13 V/nW Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Current-to-Voltage Conversion Factor 1 V/μA V/μA Suffix (with internal 200 kHz amp) -002 -012 V/μA Luminous Sensitivity*2 Min. 1.0×106 1.0×106 V/μA Suffix (with internal 200 kHz amp) -002 -012 V/μA Luminous Sensitivity*2 Min. 1.0×106 1.0×106 V/μA Suffix (with internal 200 kHz amp) -002 -012 V/μA V/μA Radiant Sensitivity*1*2 Typ. 5.0×106 3.0×106 V/lm Voltage Output Depending on PMT Dark Current*2*3*4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 k	С	Red/White Ratio	Тур.	—	0.2	_
μuminous Sensitivity *2 Min. 1.0 × 107 1.0 × 107 V/Im Radiant Sensitivity *1 *2 Typ. 5.0 × 107 3.0 × 107 V/Im Voltage Output Depending on PMT Dark Current *2 *3 *4 Typ. 47 13 V/nW Max. Output Signal Voltage Output Signal Voltage Typ. 3 3 mV Max. Output Signal Voltage Current-to-Voltage Conversion Factor 1 V/μA V/μA Suffix (with internal 200 kHz amp) -002 -012 V/m Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ V/mA Voltage Output Depending on PMT Dark Current *2 *3 *4 Min. 1.0 × 10 ⁶ V/mA V/mA Voltage Output Depending on PMT Dark Current *2 *3 *4 Min. 1.0 × 10 ⁶ V/mA V/mA Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 -012 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/mA MV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA MV Max. Output Signal Volt	Ū			85	49	mA/W
υ Luminous Sensitivity *1 Typ. 5.0 × 107 3.0 × 107 V/im Radiant Sensitivity *1 *2 Typ. 47 13 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ Typ. 5.0 × 10 ⁶ 3.0 × 10 ⁶ V/mW Voltage Output Depending on PMT Dark Current *2 *3 *4 Min. 1.0 × 10 ⁶ V/mW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/mW V/mW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 2 Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/mW Offset Voltage Typ. ±3	Suf	ffix (with internal 20 kHz a	mp)	-001	-011	
Φ Iyp. 5.0 × 10' 3.0 × 10' Radiant Sensitivity *1 *2 Typ. 47 13 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Typ. 3 3 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ V/nW Radiant Sensitivity *1 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ V/lm Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 0.1 V/μA Offset Voltage		Luminous Sensitivity *2	Min.	$1.0 imes 10^{7}$	$1.0 imes 10^{7}$	\//lm
on PMT Dark Current *2 *3 *4 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0×10 ⁶ 1.0×10 ⁶ Typ. 5.0×10 ⁶ 3.0×10 ⁶ V/lm Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/uW V/uW Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA HT827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	e	-	Тур.	$5.0 imes 10^{7}$	3.0 × 10 ⁷	
on PMT Dark Current *2 *3 *4 Max. 20 20 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0×10 ⁶ 1.0×10 ⁶ Typ. 5.0×10 ⁶ 3.0×10 ⁶ V/lm Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/uW V/uW Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA HT827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	ĕ		Тур.	47	13	V/nW
On PWI Dark Current 12.5.04 Max. 20 20 Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ Radiant Sensitivity *1 Typ. 5.0 × 10 ⁶ 3.0 × 10 ⁶ Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 2 2 Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 0.1 V/μA Offset Voltage Typ. 4.3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	Ā		Тур.			m\/
Current-to-Voltage Conversion Factor 1 V/μA Suffix (with internal 200 kHz amp) -002 -012 Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3*4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV			Max.			
Suffix (with internal 200 kHz amp) -002 -012 μ Luminous Sensitivity *2 Min. 1.0 × 10 ⁶ 1.0 × 10 ⁶ Typ. 5.0 × 10 ⁶ 3.0 × 10 ⁶ V/Im Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA Offset Voltage Conversion Factor Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV				+10 (Load resi		
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						V/μA
μ Luminous Sensitivity *2 Typ. 5.0 × 10 ⁶ 3.0 × 10 ⁶ V/Im Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2 *3 *4 Typ. 0.3 0.3 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V Current-to-Voltage Conversion Factor 0.1 V/μA Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	Suf	fix (with internal 200 kHz	amp)			
No 1/μ 5.0 × 10° 3.0 × 10° 3.0 × 10° Radiant Sensitivity *1 *2 Typ. 4.7 1.3 V/nW Voltage Output Depending on PMT Dark Current *2*3 *4 Typ. 0.3 0.3 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V V/μA V/μA Offset Voltage Typ. Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV		Luminous Sensitivity *2				V/lm
on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 0.1 V/μA M7827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	<u>e</u>			$5.0 imes 10^{6}$		-
on PMT Dark Current *2 *3 *4 Max. 2 2 mV Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 0.1 V/μA M7827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	ĕ		Тур.	4.7	1.3	V/nW
On PMT Dark Current *2*3*4 Max. 2 2 Max. Output Signal Voltage +10 (Load resistance 10 kΩ) V Current-to-Voltage Conversion Factor 0.1 V/μA H7827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	₹			0.3	0.3	m\/
Current-to-Voltage Conversion Factor 0.1 V/μA H7827 series Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV			Max.	_		
H7827 series Image: model Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV				1		
Offset Voltage Typ. ±3 mV Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV	Cu	rrent-to-Voltage Conversion	n Factor	-		V/μA
Ripple Noise *2 *5 (peak to peak) Max. 0.6 mV						
					mV	
			Max.			
Operating Ambient Temperature *7 +5 to +45 °C			ure *7			
Storage Temperature *7 -20 to +50 °C					O°	
Weight 80 g	We	ight		8	0	g

*1: Measured at the peak sensitivity wavelength *2: Control voltage = +1.0 V *3: After 30 minutes storage in darkness

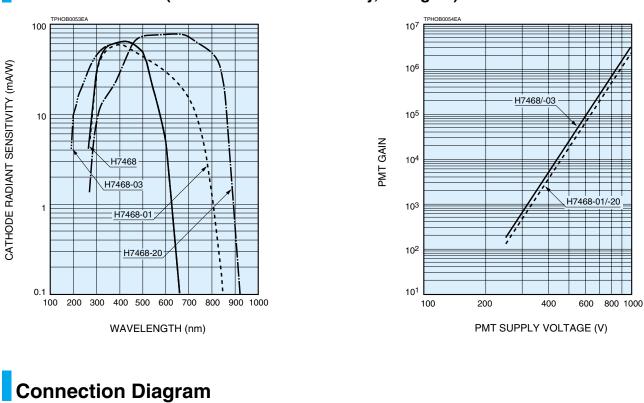
*4: Output of anode dark current *5: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 MΩ, Load capacitance = 22 pF

*6: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V *7: No condensation.

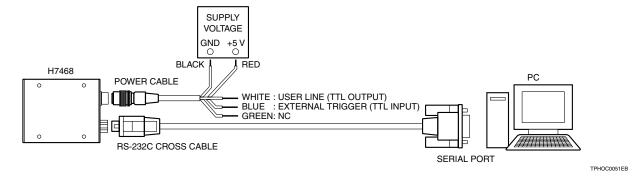
Metal Package PMT with Internal Charge Amp+ADC Type Photosensor Modules H7468 Series

The H7468 series are photosensor modules assembled with a photomultiplier tube, an AD converter circuit and a microcontroller. These photosensor modules operate from a single +5 V supply and convert the photomultiplier tube analog signals into 12-bit digital data which can be sent to a PC (personal computer) through the RS-232C interface. The photomultiplier tube supply voltage and measurement start/stop can also be controlled from the PC.

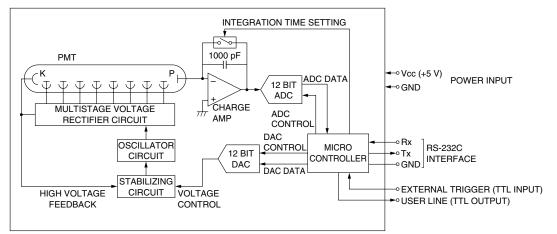
Product Variations


Type No.	Spectral Response	Features
H7468	300 nm to 650 nm	For visible range
H7468-01	300 nm to 850 nm	For visible to near IR range
H7468-03	185 nm to 650 nm	For UV to visible range
H7468-20	300 nm to 920 nm	High sensitivity in near IR range

Specifications

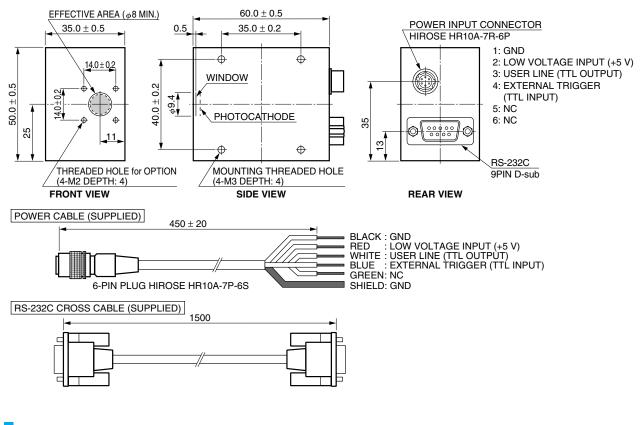

	Parameter			H7	468		Unit	
Suffix			None	-01	-03	-20		
Input Volta	ige (Vcc)		+4.75 to +5.25				V	
Max. Input Voltage				+	6		V	
Max. Input	t Current			3	5		mA	
Effective A	rea			ϕ	8		mm	
Digital Out	put: Maximum Output C	urrent		2	5		mA	
Digital Out	tput: Maximum Sink Cu	rrent		2	5		mA	
Voltage be	etween Digital Input and	GND		-0.3 to \	/cc +0.3		V	
Peak Sens	sitivity Wavelength		420	400	420	630	nm	
		Min.	40	80	40	350	μA/Im	
Cathodo	Luminous Sensitivity	Тур.	70	150	70	500	μΑνίπ	
Sensitivity	Blue Sensitivity Index (CS 5-58)	Тур.	8.0	—	8.0	—		
Sensitivity	Red/White Ratio	Тур.	—	0.2	—	0.45		
	Radiant Sensitivity *1	Тур.	62	60	62	78	mA/W	
Gain *2		Тур.	$7.0 imes10^5$	$5.0 imes10^5$	$7.0 imes10^5$	$5.0 imes10^5$		
Anode Dark Current *2, *3		Тур.	0.2	0.4	0.2	2	nA	
Anoue Da		Max.	2	4	2	20		
Integration	n Capacitance		1000				pF	
AD Conve	rter Resolution		12				bit	
Integration	n Time		0.04 to 500 (0.01 step)				ms	
Dead Time	e		0.01 to 500 (0.01 step)				ms	
Sampling	Continuous Reading		4 to 1000				ms	
Time	Fixed Set Reading		0.05 to 1000				ms	
Measurem	nent Count (fixed set rea	ading)	1 to 127				<u> </u>	
PMT Supp	oly Voltage		0 to 1000					
Digital High-Level Input Voltage Min.		Min.	4				V	
Digital Low-Level Input Voltage Max.		Max.	1				V	
Digital High-Level Output Voltage Min.		Min.	Vcc -0.7				V	
Digital Low-Level Output Voltage Max.			0.6				V	
RS-232C Interface Setting			RS-232C, 9600 baud, Parity none, 8 data bits, 1 stop bit					
Operating Ambient Temperature *4		4	+5 to +50				°C	
Storage Te	emperature *4		-20 to +50			°C		
Weight				1()5	105		

*1: Measured at the peak sensitivity wavelength *2: PMT supply voltage: 800 V


*3: After 30 minutes storage in darkness *4: No condensation

Characteristics (Cathode radiant sensitivity, PMT gain)

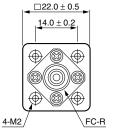
Block Diagram



TPHOC0046EB

Command List

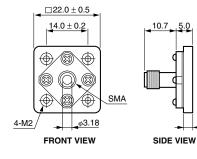
	Action	Command *1	Argument (#)	Response *2	
Change the High Voltage Applied to the PMT		V##CR	0 to 1000 (0 to 1000 V)	VA, BC, BA	
Set the Integration Time		I##CR	4 to 50000 (40 μs to 500 ms)	VA, BC, BA	
Set the Dead T	īme	T##CR	1 to 50000 (10 μs to 500 ms)	VA, BC, BA	
Set Sequence	of Readings	R#C _R	0 to 127	VA, BC, BA	
Start the	Fixed Set with RS-232C Trigger	SCR	—		
	Fixed Set with External Trigger	ECR	—	data	
Reading	Continuous with RS-232C Trigger	CCR	—	data	
Sequence	Continuous with External Trigger	LCR	—		
Stop the Read	ing Sequence	CR	—	_	
Set the Output	of the User Line	O#Cr	0 or 1	VA, BC, BA	
Data		2 bytes binary data (not characters)			
	Fixed Set	The host prepares the H7468 to take a fixed set of "R" readings after sending a start command "S C_R " or "E C_R " with external trigger on.			
Data Transfer	Continuous with RS-232C Trigger	The host collects data continuously after sending a start command "C CR" until receiving a stop command "CR".			
	Continuous with External Trigger	The host collects data continuously after sending a start command "L C _R " with external trigger on until receiving a stop command "C _R " or external trigger off.			


*1: # is 1 byte data *2: VA: command is valid, BC: command is bad, BA: argument is bad

Dimensional Outlines (Unit: mm)

Options (Optical Fiber Adapter) (Unit: mm)

E5776 (FC Type)



SIDE VIEW

TACCA0055EA

3.0

E5776-51 (SMA Type)

TPHOA0029EB

Metal package PMT Photon Counting Head H7155 Series

The H7155 series are compact photon counting head devices consisting of a metal package photomultiplier tube along with a high-speed photon counting circuit and a high-voltage power supply circuit. The high voltage supply for photomultiplier tube and the discriminator level are preset to optimum values, allowing photon counting measurement by just connecting a +5 V supply. The H7155-20/H7155-21 has an internal prescaler of division by 4. This prescaler improves the count linearity compared to the H7155/H7155-01.

Product Variations

Type No.	Spectral Response	Prescaler
H7155	300 nm to 650 nm	20
H7155-01	300 nm to 850 nm	no
H7155-20	300 nm to 650 nm	
H7155-21	300 nm to 850 nm	yes

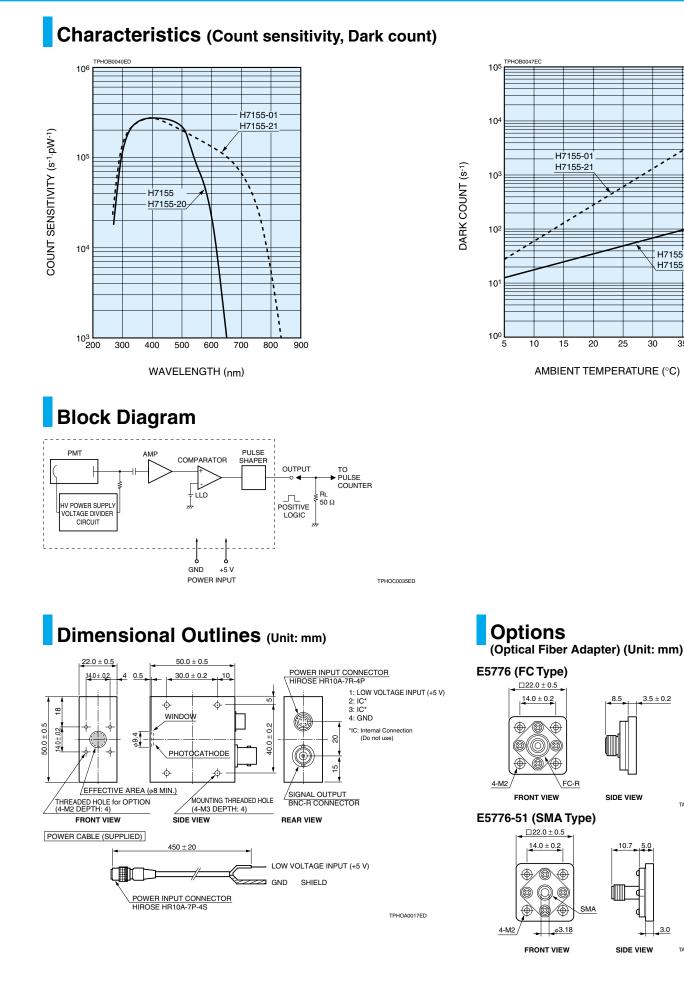
Specifications

	Parameter		H7155	H7155-20	H7155-01	H7155-21	Unit	
Input Voltag	е			+4.5 to	+5.5		V	
Max. Input Voltage			+6					
Max. Input C	Current		50	70	50	70	mA	
Effective Are	ea			φ	8		mm	
Peak Sensit	ivity Wavele	ngth		420	2	100	nm	
		300 nm	1.2×10^{5}	1.2 × 10 ⁵ *2	$1.2 imes 10^5$	1.2 × 10 ^{5 *2}		
Count		400 nm	$2.7 imes10^5$	2.7 × 10 ⁵ *2	$2.7 imes10^5$	2.7 × 10 ^{5 *2}		
Count	Тур.	500 nm	$2.2 imes 10^5$	2.2 × 10 ⁵ *2	$2.0 imes10^5$	2.0 × 10 ^{5 *2}	s⁻¹⋅pW⁻¹	
Sensitivity		600 nm	$2.1 imes 10^{4}$	2.1 × 10 ⁴ * ²	$1.4 imes10^5$	1.4 × 10 ^{5 *2}		
		700 nm	—	—	$6.7 imes10^4$	6.7 × 10 ⁴ * ²		
Count Linea	arity *1		$1.5 imes 10^{6}$	10 × 10 ⁶ *2	$1.5 imes10^{6}$	10 × 10 ⁶ *2	S ⁻¹	
Dark Count	*3	Тур.	50	50 * ²	600	600 * ²	S ⁻¹	
Dark Count	0	Max.	100	100 *2	1000	1000 *2		
Pulse-pair F	Resolution		70	10	70	10	ns	
Output Puls	e Width		30	Depends on count rate	30	Depends on count rate	ns	
	o Hoight *4	Min.	3.0	2.0	3.0	2.0		
Output Pulse Height *4		Тур.	3.6	2.2	3.6	2.2	V	
Recommended Load Resistance		50				Ω		
Signal Output Logic		Positive logic						
Operating Ambient Temperature *5		+5 to +40				°C		
Storage Ten	nperature *5			-20 to	+50		°C	
Weight				75	5		g	

*1: Random pulse, at 10 % count loss

*2: Output count will be decreased to 1/4 after the prescaler.

*3: After 30 minutes storage in darkness


*4: With input voltage +5 V, Load resistance 50 Ω and Coaxial cable RG-174/U (450 mm)

*5: No condensation

H7155 H7155-20

35

40

47

TACCA0055EA

TACCA0239EA

3.0

Metal package PMT with Cooler Photon Counting Head H7421 Series

The H7421 series are photon counting head devices containing a metal package photomultiplier tube having a GaAsP/GaAs photocathode and a thermoelectric cooler. The thermoelectric cooler reduces thermal noise generated from the photocathode which also offers a high quantum efficiency, allowing measurement to be made with a good S/N ratio even at very low light levels.

The H7421-40 has high sensitivity on wavelength from 300 nm to 720 nm. The H7421-50 is sensitive over a wide spectral range from 380 nm to 890 nm. The photomultiplier tube is maintained at a constant temperature by monitoring the output from a thermistor installed near the photomultiplier tube and regulating the current to the thermoelectric cooler.

Heatsink with fan (A7423) sold separately

Product Variations

Type No.	Spectral Response	Features
H7421-40	300 nm to 720 nm	GaAsP photocathode, QE 40 % at peak wavelength
H7421-50	380 nm to 890 nm	GaAs photocathode, QE 12 % at peak wavelength

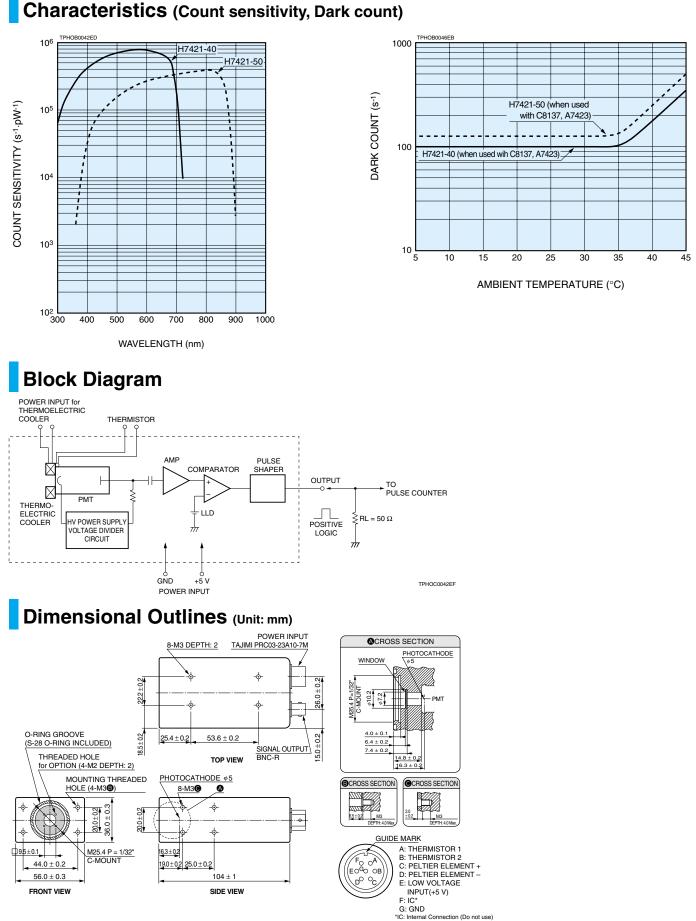
Specifications

Parameter		H7421-40	H7421-50	Unit
Input Voltage		+4.5 to	V	
Max. Input Voltage for Main Unit		+6	V	
Max. Input Current for Mai	n Unit	50)	mA
Max. Input Voltage for Therme	pelectric Cooler	2.0	6	V
Max. Input Current for Thermo	pelectric Cooler	2.2	2	А
Effective Area		φ!	5	mm
Peak Sensitivity Waveleng	ıth	580	800	nm
Count Sensitivity		$7.8 imes10^5$	$3.9 imes10^5$	s⁻¹⋅pW⁻¹
Count Linearity *1		$1.5 imes 10^{6}$	$1.5 imes 10^{6}$	S ⁻¹
Dark Count *2 *3	Тур.	100	125	
Dark Count 2 3	Max.	300	375	S ⁻ '
Pulse-pair Resolution		70	ns	
Output Pulse Width		30	ns	
Output Dules Lleight *4	Min.	3.0	N/	
Output Pulse Height *4	Тур.	3.0	V	
Recommended Load Resistance		50	Ω	
Signal Output Logic		Positive	e logic	
Operating Ambient Temperature *5		+5 to	°C	
Storage Temperature *5		-20 to	°C	
Weight		34	0	g

*1: Random pulse, at 10 % count loss

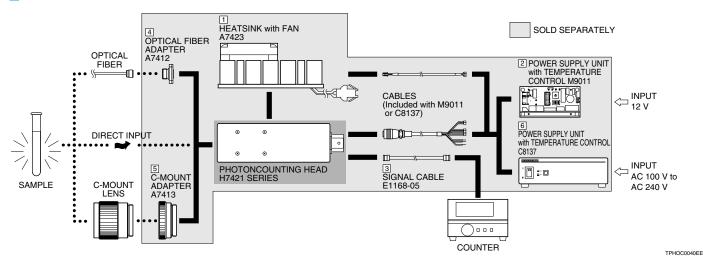
*2: PMT setting temperature 0 °C, used with C8137, M9011 and A7432

*3: After 30 minutes storage in darkness


*4: With input voltage +5 V, Load resistance 50 Ω and Coaxial cable RG-174/U (450 mm)

*5: No condensation

Cooling Specifications


Parameter	H7421-40 / H7421-50	Unit
Cooling Method	Thermoelectric cooling	—
Max. Cooling Temperature (Δ T) * ⁶	35	O°
Cooling Time *6	Approx. 5	min

*6: Input current to thermoelectric cooler = 2 A

TAJIMI PRC03-23A10-7M

Options for H7421 Series

Heatsink with Fan A7423

The temperature of the H7421 outer case rises due to the thermoelectric cooler housed in the case. The A7423 heatsink efficiently radiates away this heat to prevent a temperature rise in the H7421. The A7423 can be easily installed onto the H7421 with four M3 screws. Apply a coat of heat conductive grease onto the joint surface shared by the H7421 and A7423.

Par	ameter	Value	Unit
Input Voltage		12	V
Input Current	During Lock	140	mA
	During Operation	90	mA
Operating Vo	Itage	10.2 to 13.8	V
Weight		120	g

• Power Supply Unit with Temperature Control M9011 The M9011 is an on-board type power supply unit.

By just connecting to 12 V supply, the M9011 provides power necessary to operate the H7421 series. The M9011 also controls the thermoelectric cooler in the H7421 series so that the output and noise can be maintained at constant levels even when the ambient temperature changes. The thermoelectric cooler and PMT operation can be controlled from an external device by connecting it to the I/O connector on the M9011.

Par	ameter	Description / Value	Unit
Max. Cooling	Temperature (ΔT)	35	°C
Input Voltag	е	12	V
Max. Input (Current	1.2	Α
Max. Power	Consumption	15.8	V∙A
Main Circuit	t Output Voltage	5	V
Max. Output Curren	t for Thermoelectric Cooler	2.2	Α
Output Volta	age for Fan	12	V
Control Circal	Thermoelectric Cooler	Non-insulated TTL level input	
Control Signal	PMT	Non-insulated TTL level input	_
Input Voltage	Fan	Non-insulated TTL level input	
Error Signal Output Voltage	Thermoelectric Cooler	Non-insulated TTL level output	_
	PMT	5	N/
LED Output	Error	5	V
Setting Coo	ling Temperature	0	°C
Weight (exc	luding cables)	120	g

Signal Cable E1168-05

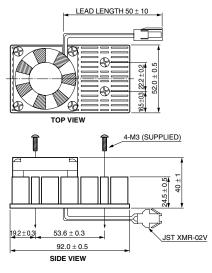
This signal cable comes attached to a BNC connector for easily connecting the H7421 to external equipment.

Optical Fiber Adapter (FC Type) A7412

The A7412 is an FC type optical fiber connector that attaches to the light input window of the H7421. The A7412 can easily be secured in place with four M2 screws.

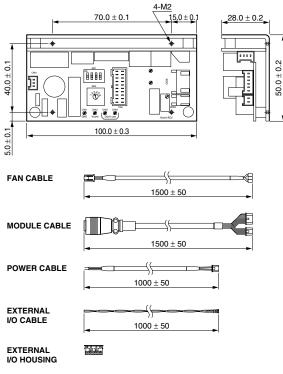
C-mount Adapter A7413

The A7413 mount adapter is used when a C-mount lens protruding 4 mm or more from the flange-back must be installed onto the H7421.

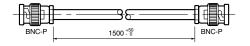

• Power Supply Unit with Temperature Control C8137

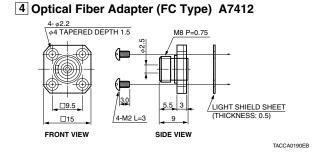
The C8137 is a power supply unit with a temperature control function. Just connecting to an AC source of 100 V to 240 V generates the output voltages for the thermoelectric cooler and the A7423 fan, needed for operating the H7421. The photomultiplier tube temperature can be maintained to 0 °C by monitoring the thermistor and regulating the output current for the thermoelectric cooler.

Parameter	Value	Unit
Max. Cooling Temperature (ΔT)	35	°C
Setting Cooling Temperature	0	
(preset at factory)	0	°C
AC Input Voltage	100 to 240	V
Input Voltage Frequency	50/60	Hz
Power Consumption	30	V∙A
Main Circuit Output Voltage	+5	V
Max. Current for Thermoelectric Cooler	2.2	Α
Output Voltage for Fan	12	V
Weight	1	kg

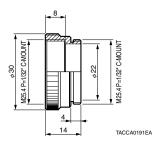

Options (Unit: mm)

1 Heatsink with Fan A7423

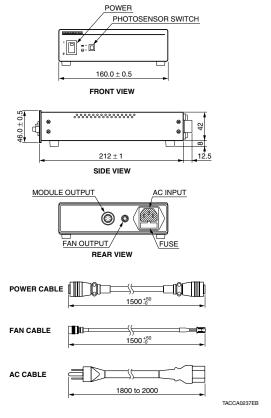



TACCA0188ED

2 Power Supply Unit with Temperature Control M9011



3 Signal Cable E1168-05



5 C-mount Adapter A7413

6 Power Supply Unit with Temperature Control C8137

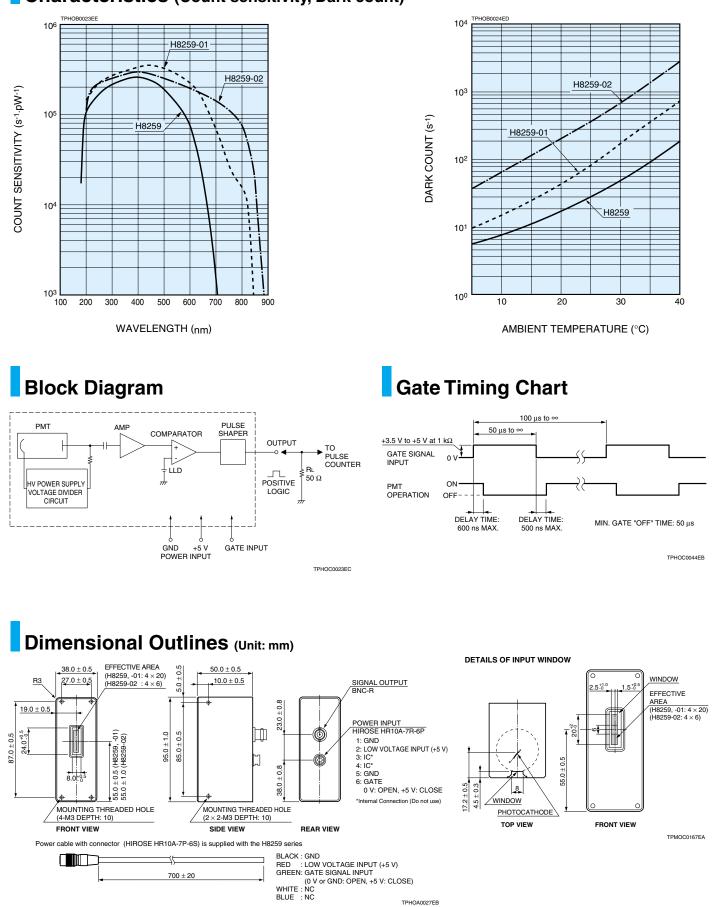
TACCA0148EA

TACCA0252EA

Side-on PMT Photon Counting Head H8259 Series

The H8259 series are photon counting head devices containing a 28-mm (1-1/8") diameter side-on photomultiplier tube, high-speed photon counting circuit, and high-voltage power supply circuit. Three types of photomultiplier tubes are provided as standard lineups to meet various needs for spectral response range. The photomultiplier tube sensitive in the near IR region usually has a large dark count due to thermal noise but high S/N measurements can be obtained since a low-noise photomultiplier tube is selected. The high voltage supply for photomultiplier tube and the discrimination level are preset to optimum values, allowing photon counting measurement by just connecting a +5 V supply. An electronic gate circuit (shutter circuit) is also included to eliminate extraneous light such as excitation light from the measurement.

Product Variations


Type No.	Spectral Response	Features	
H8259	185 nm to 680 nm	Low dark count in UV to visible range	
H8259-01	185 nm to 850 nm	Low dark count in UV to near IR range	
H8259-02	185 nm to 900 nm	High sensitivity and low dark count in UV to near IR range	

Specifications

Parameter		Parameter		H8259	H8259-01	H8259-02	Unit
Input Voltage		+4.5 to +5.5			V		
Max. Input Voltage		+6			V		
Ма	ax. Input C	urrent			80		mA
Ef	ective Are	a		4 >	× 20	4 × 6	mm
Pe	ak Sensitiv	vity Waveleng	th	400	430	400	nm
			300 nm	$2.1 imes 10^5$	$2.7 imes10^5$	$2.5 imes10^5$	
			400 nm	$2.6 imes10^5$	$3.3 imes10^5$	$3.0 imes10^5$	
Co	unt		500 nm	$1.9 imes10^5$	$3.2 imes 10^5$	$2.5 imes10^5$	
	nsitivity	Тур.	600 nm	$7.5 imes10^4$	$2.3 imes10^5$	$2.0 imes10^5$	s⁻¹⋅pW⁻¹
00	nonivity		700 nm	$1.5 imes 10^{3}$	$6.8 imes10^4$	$1.4 imes10^5$	
			800 nm	_	$1.6 imes10^4$	$7.5 imes 10^4$	
			900 nm	_	_	$3.0 imes 10^2$	
Сс	unt Linear	ity *1			$2.5 imes 10^{6}$		S ⁻¹
Da	rk Count *	2	Тур.	30	80	400	
08		-	Max.	80	200	800	
	Mode			Normally ON			
	Switchin	g Ratio		1/1000			
Gate	tz Leve	el		C-MOS (High level: +3.5 V to +5.0 V)			
Ğ	<u> </u>	t Impedance		1			kΩ
	tndu Inpu ge Gate	e Width (FW⊦	IM)	50 μs to ∞			_
		etition Rate	Max.	10			kHz
Pu	lse-pair Re	esolution		35			ns
Οι	tput Pulse	Width		30			ns
0	itout Pulea	Hoight *3	Min.		2.0		V
	Output Pulse Height *3 Typ.		2.2			v	
Recommended Load Resistance		50			Ω		
Si	gnal Outpu	t Logic		Positive logic			
Op	erating Ar	nbient Tempe	rature *4	+5 to +40			°C
St	orage Tem	perature *4		-20 to +50			°C
W	eight				220		g

*1: Random pulse, at 10 % count loss *2: After 30 minutes storage in darkness

*3: With input voltage +5 V, Load resistance 50 Ω and Coaxial cable RG-174/U (450 mm)

Characteristics (Count sensitivity, Dark count)

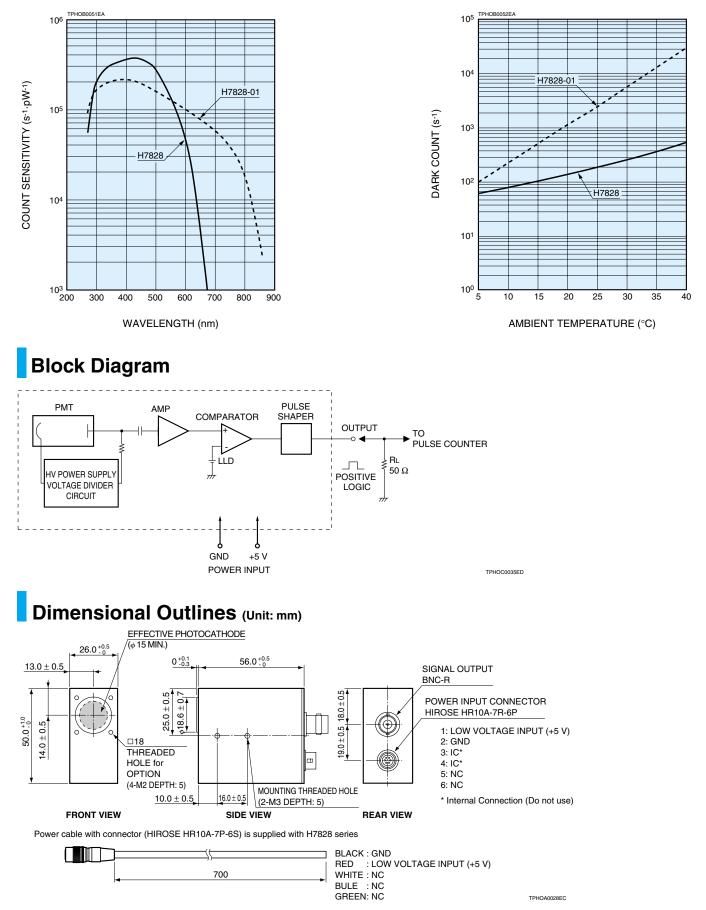
Compact Head-on PMT Photon Counting Head H7828 Series

The H7828 series are photon counting head devices using a 19-mm (3/4") diameter head-on photomultiplier tube, high-speed photon counting circuit, and high-voltage power supply circuit. The high voltage supply for photomultiplier tube and the discrimination level are preset to optimum values, allowing photon counting measurement by just connecting a +5 V supply. Despite its compact size, the effective photosensitive area is as large as 15 mm in diameter, so the incident light can be collected very efficiently. Compared to other PMT modules, the H7828 series devices have higher resistance to vibration and shock, making them suitable for portable or mobile measurement equipment. Two types of photomultiplier tubes with different spectral response characteristics are provided for measurement in the visible range or visible to near IR range.

Product Variations

Type No.	Spectral Response	Features	
H7828	300 nm to 650 nm	For visible range	
H7828-01	300 nm to 850 nm	For visible to near IR range	

Specifications


Parameter		er	H7828	H7828-01	Unit
Input Voltage	9		+4.5 to	V	
Max. Input Ve	Max. Input Voltage		+6	6	V
Max. Input C	urrent		60	0	mA
Effective Are	а		φ1	5	mm
Peak Sensiti	vity Wavele	ngth	420	380	nm
		300 nm	2.1 × 10 ⁵	1.7 × 10 ⁵	
Count		400 nm	$3.6 imes 10^{5}$	2.1 × 10 ⁵	
Sensitivity	Тур.	500 nm	$2.8 imes 10^{5}$	1.6 × 10 ⁵	s⁻¹⋅pW⁻¹
Sensitivity		600 nm	$5.0 imes 10^{4}$	1.0 × 10 ⁵	
		700 nm		$5.9 imes 10^4$	
Count Linea	rity *1		1.5 ×	S ⁻¹	
Dark Caurt	*2	Тур.	200	2000	
Dark Count		Max.	500	3500	S ⁻ '
Pulse-pair R	lesolution		70	ns	
Output Pulse	e Width		30		ns
	- -:	Min.	3.	N	
Output Puise	Output Pulse Height *3 Typ.		3.	V	
Recommended Load Resistance		esistance	50	Ω	
Signal Output Logic			Positive	_	
Operating Ambient Temperature *4		perature *4	+5 to	+40	°C
Storage Tem	perature *4		-20 to	۵°	
Weight			70	0	g

*1: Random pulse, at 10 % count loss

*2: After 30 minutes storage in darkness

*3: With input voltage +5 V, Load resistance 50 Ω and Coaxial cable RG-174/U (450 mm)

*4: No condensation

Characteristics (Count sensitivity, Dark count)

Head-on PMT Photon Counting Head H7360 Series

The H7360 series are wide sensitive area photon counting head device containing a 25-mm (1") diameter head-on photomultiplier tube, high-voltage power supply circuit and photon counting circuit. Since those circuits are designed for wide band, the H7360 series can operate at a high count rate. The high voltage supply for photomultiplier tube and the discriminator level are preset to optimum values so that photon counting can be performed just by connecting a +5 V supply and a pulse counter.

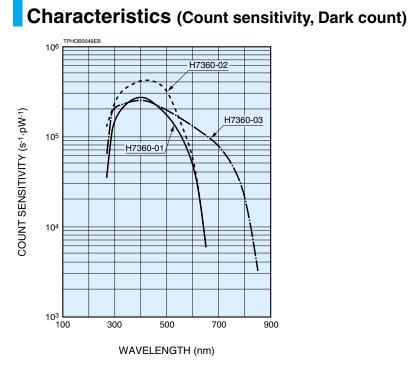
The H7360-01 is of low noise, the H7360-02 has enhanced detection efficiency in the visible range, and the H7360-03 covers sensitivity from the visible to near infrared.

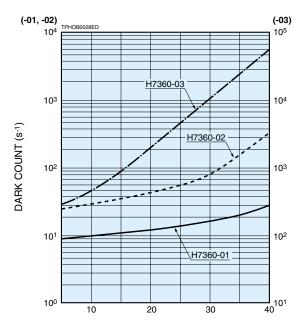
A mount flange (E6264) is provided as an option for easy installation to measurement equipment.

Product Variations

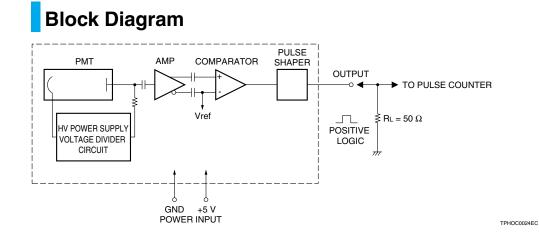
Type No.	Spectral Response	Features	
H7360-01	300 nm to 650 nm	Low noise	
H7360-02	300 mm to 050 mm	High detection efficiency	
H7360-03	300 nm to 850 nm	For visible to near IR range	

Specifications

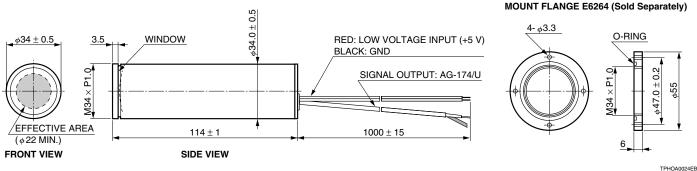

Parameter			H7360 Series		Unit	
Suffix		-01	-02	-03		
Input Voltag	е			+4.75 to +5.25		
Max. Input V	/oltage			+6		V
Max. Input C	Current			140		mA
Effective Are	ea			φ22		mm
Peak Sensit	ivity Wav	elength	375	420	420	nm
		300 nm	1.4×10^{5}	$2.3 imes 10^5$	2.1 × 10 ⁵	
Count		400 nm	$2.7 imes10^5$	4.1 × 10 ⁵	$2.5 imes 10^5$	
Sensitivity	Тур.	500 nm	1.7 × 10 ⁵	$3.4 imes10^5$	2.0 × 10 ⁵	s⁻¹⋅pW⁻¹
Sensitivity		600 nm	$4.6 imes 10^4$	$5.7 imes 10^4$	1.3 × 10 ⁵	
		700 nm	_		$7.8 imes 10^4$	
Count Linea	arity *1		6.0 × 10 ⁶			S ⁻¹
David Causet	*2	Тур.	15	60	5000	
Dark Count	~ <u>~</u>	Max.	80	300	15000	S ⁻ '
Pulse-pair F	Resolutio	n	18		ns	
Output Puls	e Width		9			ns
Output Puls	e Height	*3 Typ.	3			V
Recommen	ded Load	d Resistance	50			Ω
Signal Output Logic		Positive logic			_	
Operating Ambient Temperature *4		+5 to +40			°C	
Storage Temperature *4		-20 to +50			°C	
Maight	N	1ain Body		140		~
Weight	N	Iount Flange		25		g


*1: Random pulse, at 10 % count loss

*2: After 30 minutes storage in darkness


*3: With input voltage +5 V, Load resistance 50 Ω

*4: No condensation



AMBIENT TEMPERATURE (°C)

Dimensional Outlines (Unit: mm)

Metal Package PMT Photon Counting Head H7467 Series

The H7467 series are photon counting head designed for photon counting by simply connecting to a PC (personal computer). The H7467 houses a metal package photomultiplier tube, high-voltage power supply circuit, photon counting circuit, 20-bit counter and microprocessor in a compact package. Data transfer, measurement time and other necessary adjustments are controlled by commands from the PC through the RS-232C interface. The photon counting circuit discrimination level and the high voltage supply for photomultiplier tube are preadjusted to optimum values prior to shipment so that the H7467 can be easily operated by simply supplying +5 V.

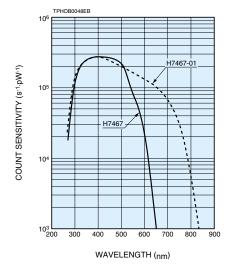
Product Variations

Type No.	Spectral Response	Features	
H7467	300 nm to 650 nm	For visible range	
H7467-01	300 nm to 850 nm	For visible to near IR range	

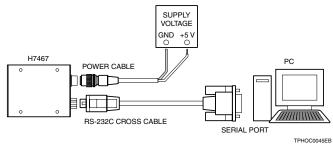
Specifications

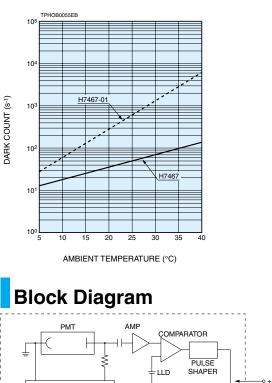
Parameter		ter	H7467	H7467-01	Unit
Input Voltage			+4.5 to	V	
Max. Input V	/oltage		6	3	V
Max. Input C	Current		18	30	mA
Effective Are	ea		φ	8	mm
Peak Sensit	ivity Wavel	ength	420	400	nm
		300 nm	1.2 × 10 ⁵	1.2×10^{5}	
Count		400 nm	2.7 × 10 ⁵	$2.7 imes 10^{5}$	
Count	Тур.	500 nm	2.2 × 10 ⁵	$2.0 imes 10^{5}$	s⁻¹⋅pW⁻¹
Sensitivity		600 nm	2.1 × 10 ⁴	$1.4 imes 10^{5}$	
		700 nm		6.7×10^{4}	
Count Linea	arity *1		1.5 × 10 ⁶		S ⁻¹
David Caunt	*2	Тур.	50	600	1
Dark Count		Max.	100	1000	S ⁻¹
Pulse-pair F	Resolution		70		ns
Interface			RS-232C, 9600 baud, Parity none, 8 data bit, 1 stop bit		_
Integration Time			10 to 10 000 (10 Step)		ms
Operating Ambient Temperature *3		nperature *3	+5 to	+40	°C
Storage Temperature *3		3	-20 to +50		°C
Weight			12	20	g

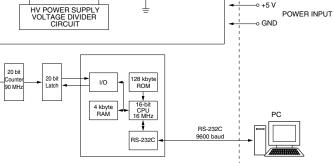
*1: Random pulse, at 10 % count loss

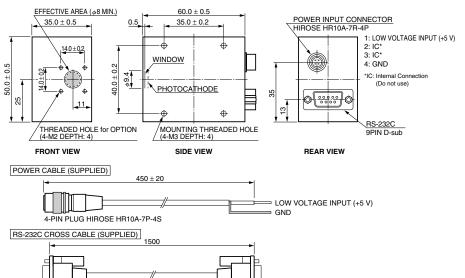

*2: After 30 minutes storage in darkness

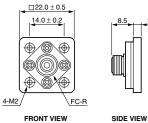
*3: No condensation


Command List


Action	Send Command	Explanation
The Integration time settng	&H80XXXXXXXX	"XXXXXXXX" is the integration time in milliseconds.
The Measurement number setting	&H81XXXXXXXX	"XXXXXXXX" is the measurement number. Generally set to "00000001"
Start Command	&H8400000001	_
Stop Command	&H840000000	—

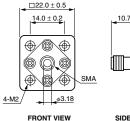

Characteristic (Count sensitivity)

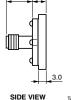




Options

(Optical Fiber Adapter) (Unit: mm)




TACCA0055EA

TPHOC0038EC

E5776-51 (SMA Type)

TPHOA0019EE

5.0

59

Head-on PMT Photon Counting Head H9319 Series

The H9319 series photon counting heads are designed to perform photon counting by just connecting to a PC. The H9319 series includes a 25-mm (1") diameter head-on photomultiplier tube, photon counting circuit, high-voltage power supply circuit, counter and microprocessor. Data transfer, measurement time and other necessary adjustments can be controlled by commands from the PC through the RS-232C interface.

Since the H9319 series performs linearity correction by the internal microprocessor, it provides excellent count linearity within a range of ± 1 % at 2×10^7 s⁻¹.

Product Variations

Type No.	Spectral Response	Sample Program	Prescaler
H9319-01	300 nm to 650 nm	yes	1/4
H9319-11		no	1/4
H9319-02	200 nm to 950 nm	yes	1/4
H9319-12	300 nm to 850 nm	no	1/4

Specifications

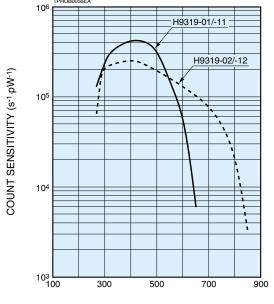
Parameter				H9319	Series		Unit	
Suffix			-01	-11	-02	-12	_	
Input Voltage	Э			+4.75	to +5.25		V	
Max. Input V	oltage		+6			V		
Max. Input C	Current		60				mA	
Effective Are	ea			ϕ	22		mm	
Peak Sensiti	ivity Wavel	ength		4	-20		nm	
		300 nm	2.3 >	≺ 10 ⁵	2.1	× 10 ⁵		
Count		400 nm	4.1 >	≺ 10 ⁵	2.5	× 10 ⁵		
Sensitivity	Тур.	500 nm	3.4 >	≺ 10 ⁵	2.0	× 10 ⁵	s⁻¹⋅pW⁻¹	
Sensitivity		600 nm	5.7 >	< 10 ⁴	1.3	× 10 ⁵		
		700 nm	-	_	7.8	× 10 ⁴		
Count Linearity *1			2×10^{7}				S ⁻¹	
Dark Count	*2	Тур.	1	50	10	000		
Dark Count		Max.	30	00	15	000	5	
PMT Operat	ting Voltag	e Range	+300 to +1200				V	
Integration 7	Time		10 to 1000			ms		
Settling Tim	•		1 *3			S		
Setting Tim	e		5 *4				S	
Input Signal	(External	Trigger Input) *5		TTL lev	/el signal		—	
Output Sign	al (User L	ine Output) *6		TTL lev	/el signal		—	
Interface		RS-232	C, 9600 baud, Pari	ty none, 8 data bit,	1 stop bit	—		
Operating A	mbient Ter	nperature *7		+5 t	o +50		°C	
Storage Tem	perature *	7		-20 t	to +50		°C	
Weight *8				2	80		g	

*1: Random pulse, ±1 %

*2: After 30 minutes storage in darkness

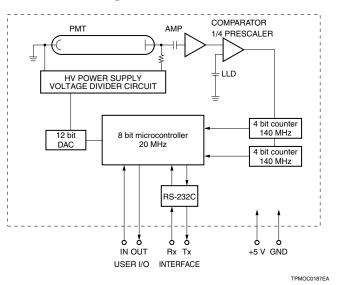
*3: The time required for the output to reach a stable level following a change in the control voltage from 500 V to 1000 V in darkness

*4: The time required for the output to reach a stable level following a change in the control voltage from 1000 V to 500 V in darkness


*5: Selectable ECR mode or LCR mode (refer to command list)

*6: Controllable by RS-232C command

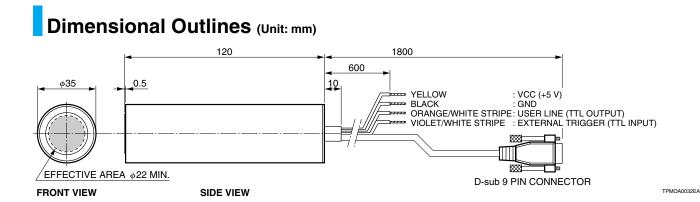
*7: No condensation


*8: Main body: Approx. 180 g

Characteristic (Count sensitivity)

WAVELENGTH (nm)

Block Diagram



Command List

Action	Command *9	Explanation	Argument	Response *10
Set the Integration Time	P#C _R	Set the number of 10 msec intervals to sum. Same as integration time for 1 reading.	1 to 100	VA, BC, BA
Set the Sequence of Readings	R#C _R	Set sequence of readings, where each reading uses the integration time set with the P command.	1 to 255	VA, BC, BA
Set the PMT Input	V##CR	Change the high voltage applied to the tube.	300 to 1200	VA, BC, BA
Voltage	DCR	Re-set the default high voltage to the tube	_	VA, BC
Set the Output of the User Line	O#CR	Set the output of the user digital output line. 0: Low level output 1: High level output	0 or 1	VA, BC, BA
	SCR	Start the reading sequence	—	4 byte/reading
Start the Deading	CCR	Start a continuous reading process. Will continue in- definitely until a STOP character (CR) is sent.	_	4 byte/reading
Start the Reading Sequence	ECR	Start a reading sequence for each positive-edge TTL transition applied to the purple stripe user line.	_	4 byte/reading
	LCR	Start a reading sequence for each positive-level TTL transition applied to the purple stripe user line.	—	4 byte/reading

*9: The Response acknowledgment is returned having two bytes.

*10: VA: valid command, BC: bad command, BA: bad argument

Metal Package PMT PMT Module with Gate Function H10304 Series

The H10304 series is a PMT module that allows high-speed gate operation at a high repetition rate. The combination of built-in metal package PMT and gate circuit makes this module compact yet still provides excellent characteristics: 100 ns minimum gate width, 100 kHz repetition rate. This module also contains a high-voltage power supply so that PMT gain can be varied by simply adjusting the control voltage. The internal protection monitor issues an error signal if high-intensity light enters the module.

A pulse generator C10149 (option) is also provided for gating the H10304.

Product Variations

Α

H10304-A-B

Suffix	Spectral Response
-00	300 nm to 650 nm
-01	300 nm to 850 nm
-02	300 nm to 880 nm
-03	185 nm to 650 nm
-04	185 nm to 850 nm
-06	185 nm to 880 nm
-20	300 nm to 920 nm

В	Suffix	Spectral Response
	NN	Normally ON Type
	NF	Normally OFF Type

The suffix -06 type (synthetic silica window) has higher sensitivity than the -03 type below 300 nm wavelength range.

Specifications

Parameter	H10304 Series	Unit
Input Voltage	+14.5 to +15.5	V
Max. Input Voltage	+16	V
Max. Input Current	100	mA
Max. Surge Current	300	mA
Max. Control Voltage	+1.0 (Input impedance: 10 kΩ)	V
Recommended Control Voltage Adjustment Range	+0.25 to +0.9	V
Effective Area	φ8	mm
Pulse Linearity *1	30	mA
Max. Output Signal Current	100	μA
Operating Ambient Temperature *2	+5 to +45	°C
Storage Temperature *2	-20 to +50	°C
Weight	Approx. 120	g

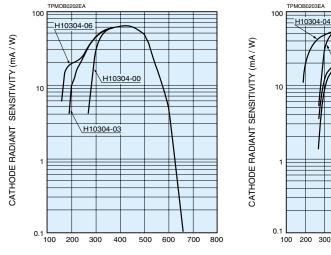
	Parameter			H10304 Series				Unit
Suffix			-00	-03, -06	-01, -04	-02	-20	—
		Min.	40	40	80	200	350	A /line
Cathode	Luminous Sensitivity	Тур.	70	70	150	250	500	μA/Im
	Radiant Sensitivity *3	Тур.	62	62	60	58	78	mA/W
		Min.	10	10	15	25	35	A/Im
Anada	Luminous Sensitivity	Тур.	50	50	75	125	250	
Anode	Devil Course at *4	Тур.	0.2	0.2	0.4	2	2	4
	Dark Current *4	Max.	2	2	4	20	20	nA
Time *1	Rise Time	Тур.		0.78 5.4				ns
Time *1	Transit Time	Тур.						ns
Response	TTS	Тур.			230			ps

*1: Control voltage = +0.8 V

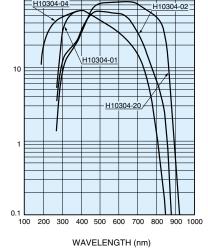
*2: No condensation

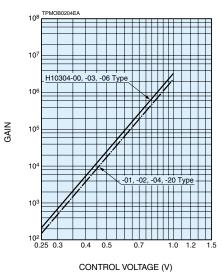
*3: Measured at the peak sensitivity wavelength

*4: Measured when photomultiplier tube operation is ON. After 30 minutes storage in darkness

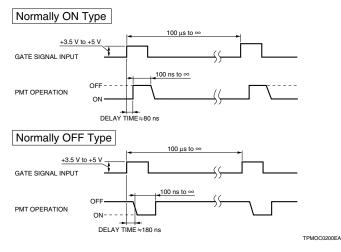

	Parameter		H10304-A-NN	H10304-A-NF	Unit
	Mode		Normally ON	Normally OFF	—
	Gate Width (FWHM)		100 n	s to ∞	—
	Rise Time		8	70	ns
	Fall Time		70	8	ns
Gate Mode	Repetition Rate	Max.	10		kHz
	Switching Ratio		1		
	Switching Noise *5	Max.	1	5	mV
	Delay Time	Max.	80	180	ns
	Gate Jitter	Max.	-	1	ns
Gate Signal	Level		C-MOS (High leve	el: +3.5 V to +5 V)	_
Input	Pulse Width		20 ns to ∞	200 ns to ∞	_
Sensitivity Adjustment Range			1: 104		_
Ripple Noise *1 *6 (peak to peak)		3		mV	
Settling Time	*7		0	.1	S

*5: Load resistance 50 Ω , peak to peak

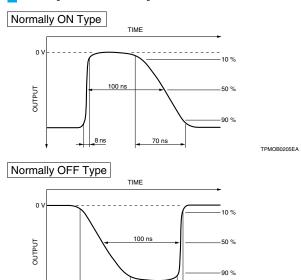

*6: Cable RG-174/U, Cable length 450 mm, Load resistance = 1 M Ω , Load capacitance = 22 pF


*7: The time required for the output to reach a stable level following a change in the control voltage from +1.0 V to +0.5 V.

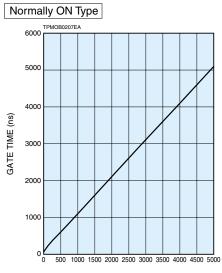
Characteristics (Cathode radiant sensitivity, Gain)



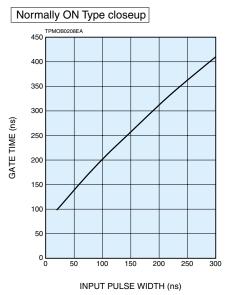
WAVELENGTH (nm)

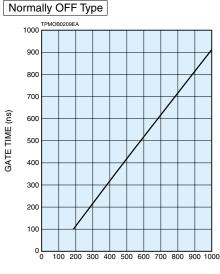


Gate Timing Chart



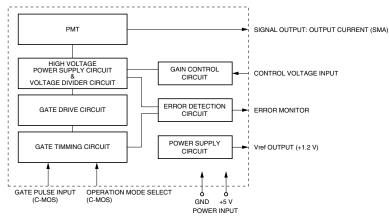
Output Examples


70 ns

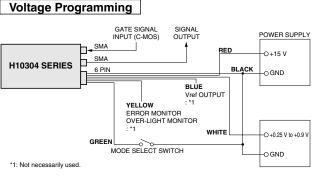

Gate Time Characteristics

INPUT PULSE WIDTH (ns)

TPMOC0201EA

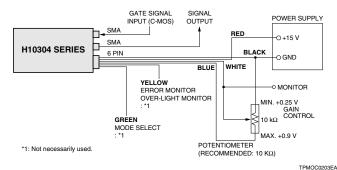


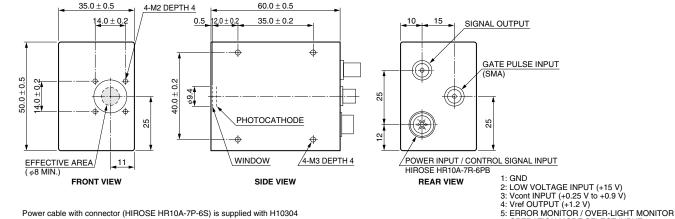
_8 ns


TPMOB0206EA

INPUT PULSE WIDTH (ns)

Block Diagram


Sensitivity Adjustment Method

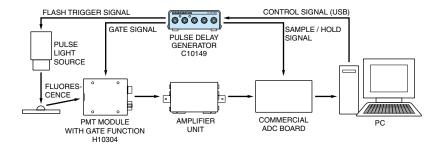


TPMOC0202EA

Dimensional Outlines (Unit: mm)

Resistance Programming

6: OPERATION MODE SELECT INPUT BLACK GND LOW VOLTAGE INPUT (+15 V) Vcont INPUT (+0.25 V to +0.9 V) BED WHITE BIUE BLUE : Vref OUTPUT (+1.2 V) YELLOW: ERROR MONITOR / OVER-LIGHT MONITOR GREEN OPERATION MODE SELECT INPUT 450 ± 20


Option **PULSE DELAY GENERATOR C10149**

The C10149 can provide the gate (shutter) timing required to operate the H10304. Up to 3 independent channels are available for pulsed output. One channel can be output in burst mode.

The C10149 connects to a PC (personal computer) through a USB port, PC is used to control, set and supply power to the C10149.

Connecting Example

TAPPC0162EA

TPMOA0042EA

Related Products

Power Supply for PMT Modules C7169

The C7169 is a power supply unit for driving photosensor modules. Both drive voltages and control voltages can be supplied from this one unit.

Applicable products:

H5773/H5783/H6779/H6780 Series, H5784 Series H9305 Series, H9306/H9307 Series H7732 Series, H7826 Series, H7827 Series, H8249 Series H9656 Series

Parameter		Description / Value	Unit
Output Voltage		±15	V
Output Current Ma	ax.	0.3 (+15 V), 0.2 (-15 V)	Α
Control Voltage (variable voltage r	ange) *1	0 to +1.2	V
AC Input Voltage		100 to 240	V
Input Power Frequency		50/60	Hz
Operating Ambient Temperature *2		+5 to +50	C°
Storage Temperature *2		-20 to+50	°C
Output Connector		Binding post	
Dimensional Outlines ($W \times H \times D$))	147 × 61 × 200	mm
Weight		Approx.1.2	kg

*1: Adjust within the recommended control voltage range for the photosensor module being used.

*2: No condensation

Amplifier Units


These are amplifier units for photomultiplier tubes and current output type PMT modules. C7319: Switchable between 2 frequency bandwidths and 3 current-to-voltage conver-

sion factor. Ideal for applications requiring low noise and high gain.

C6438: Wide bandwidth from DC to 50 MHz and gain of 20 dB. (-01 type is 54 dB)

C9663: Wide bandwidth from DC to 150 MHz and gain of 38 dB.

C5594: High cut off frequency of 1.5 GHz. Faithfully amplifies high-speed output pulses. The input/output connector can be selected from the SMA or BNC types.

▲ From left: C9663, C7319, C6438, C5594-44

Paramet	er	C7319	C6438	C6438-01	C9663	C5594-44 *6	Unit
Frequency Bar (-3 dB)	ndwidth	DC to 20 kHz or DC to 200 kHz (switchable)*1	DC to 50 MHz	DC to 50 MHz	DC to 150 MHz	50 kHz to 1.5 GHz	_
Voltage Gain		<u>*</u> 2	20 ± 3 *4 (Approx. 10 times)	54 ± 3 *4 (Approx. 500 times)	38 *4 (Approx. 80 times)	36 *4 (Approx. 63 times)	dB
Current-to-Volt Conversion Fac	•	0.1 V/μA, 1 V/μA or 10 V/μA (switchable)	0.5 mV/μA *5	25 mV/μA *5	4 mV/μA *5	3.15 mV/μA *5	—
Amplifier Input	(output)	±Current (inverted)	±Voltage (non-inverted)	±Voltage (non-inverted)	±Voltage (non-inverted)	±Voltage (non-inverted)	_
Input Impedance	ce	<u>*</u> 2	50	50	50	50	Ω
Recommended Load	Resistance	—	50	50	50	50	Ω
Output Signal Vol	tage Max.	±13 *3	±1 *4	±1 *4	±1.4 *4	+0.8, -2.5 *4	V
	Input	BNC-R	BNC-R	BNC-R	BNC-R	BNC-R	_
Connector	Output	BNC-R	BNC-R	BNC-R	BNC-R	BNC-R	_
	Power	DIN (6-pin)	DIN (6-pin)	DIN (6-pin)	DIN (6-pin)	—	_
Input Voltage	Input Voltage		±5	±5	±5	+12 to +16	V
Input Current Max.		±16	±55	±80	±80	+95	mA
Dimensions (W	\times H \times D)	60 imes 43.2 imes 65	60 imes 43.2 imes 65	60 imes 43.2 imes 65	60 imes 43.2 imes 65	54 imes 17 imes 33	mm
Weight		Approx.170	Approx.160	Approx.160	Approx.180	Approx.80	g

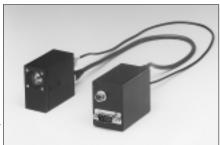
*1: Frequency bandwidth is limited to DC to 100 kHz at conversion coefficient of 10 V/μA. *2: C7319 is current input type.

*3: At \pm 15 V Supply voltage and 10 k Ω load resistance. *4: At 50 Ω load resistance.

*5: Value after current-to-voltage conversion by input impedance. *6: Contact our sales office for other connectors for C5594.

Photon Counting Unit C9744

Photon counting unit is designed to convert single photoelectron pulses from a photomultiplier tube into 5 V digital signals by use of the built-in amplifier and discriminator circuits. Photon counting with a high S/N ratio can be performed by simply connecting a counter to the output of the photon counting unit.


The C9744 uses a high-speed electronic circuit that allows measurement with an excellent output linearity up to 10^7 s^{-1} . The C9744 also has a prescaler (division by 10) eliminating the need for a high-speed counter.

Parameter		Descripti	Description / Value	
Input Impedance		5	60	Ω
Discrimination Level (input	t conversion)	-0.4 1	to -16	mV
Required PMT Gain		3 ×	10 ⁶	_
Prescaler		÷1	÷10	_
Count Linearity	÷1	4 × 10 ⁶		
Count Linearity	÷10	1 ×	107	5
Dulas pair Desolution	÷1	2	25	20
Pulse-pair Resolution	÷10	10		ns
Output Pulse		CMOS 5 V, POSITIVE LOGIC		_
Output Bulaa Width	÷1	10		ns
Output Pulse Width	÷10	Depends on count rate		_
Supply Voltage		+5.0 V \pm 0.2 V, 130 mA / -5.0 V \pm 0.2 V, 50 mA		_
	Input	BN	C-R	_
Connector	Output	BNC-R		_
	Power	DIN (6	δ-pin) *2	_
Dimensions (W \times H \times	D)	90 × 32	2 × 140	mm
Operating Ambient Temperature *1		0 to +50		O°
Storage Temperature *	1	-15 to	o +60	O°
Weight		Appro	x. 250	g

*1: No condensation *2: Supplied with a cable (1.5 m) attached to the mating plug.

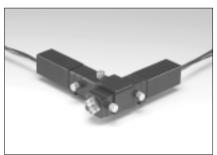
Data Acquisition Unit C8908

The C8908 data acquisition unit have a signal processing circuit that converts analog signals of a PMT module into digital data for output to a PC (personal conputer). Integration time, number of reading and photomultiplier tube gain can be controlled from the PC. The C8908 also provide output voltage necessary to operate a PMT module, making device setup and connection easier.

Left: Photosensor module (sold separately) Right: C8908

Parameter	Description / Value	Unit
Configuration	Charge amp + ADC + CPU + interface	
Pulse-pair Resolution	—	ns
ADC Resolution	12	bit
Interface	RS-232C	_
Integration Time	0.04 to 500	ms
Dead Time	0.01 to 500	ms
Number of Reading at Fixed Set Reading	1 to 127	_
Supply Voltage	+5	V
Accessories (supplied)	Power cable (6-pin), RS-232C cross cable	
Applicable PMT Modules	H7826 Series, H7732 Series, H6780 Series ^{*1} , H5783 Series ^{*1} , H9305 Series ^{*1}	

*1: We can install a signal connector (BNC-P) and a power input connector (HIROSE HR 10A-7P-6P) to the cable ends of an applicable PMT module if needed (extra charge). Please specify the type of connector when placing your order.


*: Communication commands are identical to those for the H7468.

Optical Blocks for PMT Modules

The optical block is a compact unit containing optical components such as bandpass filters and dichroic mirror. Optical components are accurately arranged in angular "minutes" by high-precision machining technology. The joint section is fully light-shielded by its V shape and an O-ring. It can easily be attached to another block or removed by the thumb screw, allowing any desired combination of blocks.

Line Up

Picture	Type No.	Over View
1	Adapter Block A10030	Adapter block for connecting each block to PMT module
00	Beam Expander Block A10031	The beam expander block expands or reduces the diameter of the incident light beam (parallel light). When entering measurement light to the PMT module, it narrows a 20 mm diameter beam down to a 7 mm diameter bean. The tip of the block has a C-mount thread for connecting to another device.
	ND Filter Block A10032 Series	A neutral density (ND) filter is included in this optical block to attenuate light levels.
	Filter Block A10033 Series	This optical block contains a filter that passes only particular wavelengths. Bandpass filters and long-pass filters are available.
P	Dichroic Block A10034 Series	This optical block contains a dichroic mirror that reflects particular wavelengths but trans- mits other wavelengths.
	Beam Splitter Block A10035	This optical block uses a cubic type half-mirror. Incident light is split into reflected and transmit- ted beams at a ratio of 1 to 1. NOTE: Light level is cut to approximately one third due to light absorption.
	Shutter Block A10036	The A10036 is a manual shutter block with a plate that is opened and closed by sliding it left and right. An O- ring is placed in this shutter block to prevent light from leaking through the gap between the block body and the plate. Light is sufficiently blocked so there will be no problem even at photon counting levels.
	Fiber Adapter Block A10037(FC) A10037-01(SMA)	The lens assembled in the block collimates the light spread from the optical fiber. Connectable to FC and SMA connector type fiber cable
	Joint Block A10038 Series	The A10038 series is a joint block for connecting one optical block to another. The joint is available in two types: MM (male-male) type and FF (female- female) type. Interposing the MM block (A10038- 01) and/or FF block (A10038-02) between optical blocks allows various connections.
	C-mount Adapter Block A10039	One end of this adapter block has a C-mount (male threads) that connects to the H7421 series or H7422 series PMT module, while the other end couples to another optical block. This adapter block also connects to a commercially available device with a C-mount.

▲Optical block combinations

Features

Easy to Attach/Detach

No Alignment Required

Superb Light-shielding Effect

Suitable PMT Module

H5773 / H5783 / H6779 / H6780 / H9858 H5784 / H9656 / H7155 / H7467 / H7468 H7421 / H7422 / H10304

For information on other photomultiplier tube (PMT) modules, contact our sales office.

Filter Characteristics

ND Filter Block

Type No.	Built-in Filter	Transmittance
A10032-10	ND Filer	10 %
A10032-11	ND Flief	1 %

Filter Block

Type No.	Built-in Filter	Central Wavelength / FWHM
A10033-01		530 / 40 nm
A10033-02		610 / 40 nm
A10033-03	Bandpass Filter	630 / 60 nm
A10033-04		460 / 60 nm
A10033-05		575 / 30 nm
A10033-06		700 / 60 nm

Type No.	Built-in Filter	Cut-on Wavelength
A10033-61	Longnooo	390 nm
A10033-62	Longpass Filter	500 nm
A10033-63	Filler	600 nm

Dichroic Block

Type No.	Built-in Mirror	Туре
A10034-01		DM 505
A10034-02		DM 565
A10034-03	Dichroic	DM 600
A10034-04	Mirror	DM 660
A10034-05		DM 430
A10034-06		DM 455

Counting Unit C8855

The C8855 is a counting unit with a USB interface and can be used as a photon counter when combined with a photon counting head, etc.

The counter of the C8855 includes two counter circuits (double counter method) capable of counting input signals with no dead time. The USB interface easily connects to a notebook PC allowing measurement in an even wider application field. When used with a photon counting head, the C8855 supplies power (+5 V / 200 mA) necessary to operate the photon counting head.

Since the C8855 is hot-swap compatible (plug and play compatible), it helps you set up measurement environment quickly. You can start measurement on the day the C8855 is delivered by using the sample software that supplied with the C8855.

- Time-resolved measurement (minimum resolution: 50 μs) for monitoring chemiluminescence and biological clocks

• Quick measurement setups (hot-swap compatible)

When software such as a device driver is installed into your PC beforehand, you can start measurement by just connecting the USB cable, without restarting the PC.

Applicable to various measurement methods

The C8855 is fully controlled by DLL (dynamic link library) functions that come with the C8855.

All information on these DLL functions is available to support software programming that handles various types of user measurement applications.

Parameter		Description / Value	
	Number of Input Signals	1 ch	
loout	Signal Input Level	TTL positive logic	
Input	Signal Pulse Width	8 ns or longer	
	Input Impedance	50 Ω	
	Counter Method	Double counter method	
Counter	Maximum Count Rate	50 MHz	
	Maximum Counter Capacity	2 ³² counts/counter gate	
Counter Gate	Counter Gate Mode	Internal counter gate only	
Counter Gale	Internal Counter Gate Time	50 µs to 10 s (1, 2, 5 step)	
Triggor	Trigger Method	External trigger / Software trigger	
Trigger	External Trigger Signal	TTL negative logic	
General Output	Section	Open collector / 2 bits	
Voltage Output		+5 V / 200 mA Max.	
Compatible OS		Windows [®] 2000/XP Pro	
Interface		USB (Ver. 1.1)	
Supply Voltage		+7 V / 500 mA Max. (supplied from AC adapter)	
Dimensions (W >	\times H \times D)	148 mm \times 30 mm \times 96 mm (excluding rubber feet and projecting parts)	
Weight		300 g	
Operating Ambie	ent Temperature / Humidity *1	+5 °C to +45 °C / Below 80 %	
Storage Temperature / Humidity *1		0 °C to +50 °C / Below 85 %	
CE Marking		Conforms to the EMC directive (89/336/EEC)	
		and the low voltage directive (73/23/EEC) of the European Union.	
	AC Input	90 V to 264 V	
AC Adapter	Output	7 V / 1.6 A	

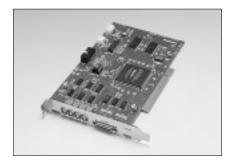
*1: No condensation

Supplied: CD-ROM (containing instruction manual, device driver, DLL, sample software*, etc.) USB cable, AC adapter, AC cable, power output connector

*: Sample software is configured from Lab VIEW™ of National Instruments, Inc.

Related Products

Counting Board M8784


The M8784 counting board is a PCI bus add-in board type counter. The M8784 functions as a photon counter when combined with a photon counting head, etc.

The counter of the M8784 includes two counter circuits (double counter method) capable of counting input signals with no dead time. The internal memory allows pulse counting over extended periods with a high time resolution (10 μ s).

A maximum of two M8784 boards can be simultaneously controlled from a PC, making it possible to perform simultaneous dual-channel measurements.

Initial setting for the M8784 is simple and easy due to PnP (plug and play). You can start measurement on the day you receive the M8784.

- Also ideal for long-term data collection such as in biological clock monitoring $^{\star)}$

This is an ideal feature when the time needed to record count data in the memory is longer than the time needed to transfer the count data to a PC and write it into the storage medium. This allows time-resolved measurement (minimum resolution: $10 \ \mu s$) over a long period of time . Memory recording time is calculated from "counter operation time \times memory length".

(Example: minimum resolution 10 μ s × maximum memory length 256 000 = 2.56 s)

*) Standard sample software may not work at some conditions depending on the combination of measuring time and time resolution. Please consult with our sales office in advance with information of your condition.

\bullet Time-resolved measurement of chemiluminescence (minimum resolution 10 μs)

Supports different kinds of measurements

The M8784 is fully controlled by DLL (dynamic link library) functions that come with the M8784. All information on these DLL functions is available to support software programming that handles various types of user measurement applications.

Pa	arameter	Description / Value	
	Number of Input Signals	1 ch	
loout	Signal Input Level	TTL positive logic	
Input	Signal Pulse Width	8 ns or longer	
	Input Impedance	50 Ω	
	Counter Method	Double counter method	
Counter	Maximum Count Rate	50 MHz	
	Maximum Counter Capacity	2 ³² counts/counter gate	
	Counter Gate Mode	Internal, external, START-STOP	
Counter Gate	Internal Counter Gate Time	10 µs to 10 s (1, 2, 5 step)	
	External Counter Gate Time	100 ns or longer	
Trigger	Trigger Method	External trigger / Software trigger	
піддеі	External Trigger Signal	TTL negative logic	
	Memory Method	Double memory method	
Memory	Memory Date Width	128 000 (when capacity of 2 ³² is selected) / 256 000 (when capacity of 2 ¹⁶ is selected)	
	Memory Capacity	2 ³² (32 bit) / 2 ¹⁶ (16 bit)	
General I/O	Input Signal	TTL negative logic / 8 bit	
General I/O	Output Signal	Open collector / 8 bit	
Compatible OS		Windows [®] 2000/XP Pro	
Bus Type		PCI bus interface; conforms to Rev. 2.1	
Size		PCI standard (half size)	
Weight		150 g	
Operating Ambient Temperature / Humidity *1		+5 °C to +45 °C / Below 80 %	
Storage Temperature / Humidity *1		0 °C to +50 °C / Below 85 %	
CE Marking		Conforms to the EMC directive (89/336/EEC) of the European Union.	

*1: No condensation

Supplied: CD-ROM (containing instruction manual, device driver, DLL, sample software*, etc.), Signal input cable (E1168-22), General-purpose I/O connector (JAE: TXA20A-26PH1-D2P1-D1), Connection cable set (JAE: XHP-3, XHP-4)

*: Sample software is configured from Lab VIEW™ of National Instruments, Inc.

Counting Board M9003

The M9003 counting board is a PCI bus add-in board counter that functions as a photon counter when used along with a Hamamatsu photon counting head.

The counter section of the M9003 has two counter circuits (double counter method) capable of counting the input signal pulses without any dead time. The counter operates in either gate counter mode or in reciprocal counter mode. Gate counter mode counts the input signal pulses only during each gate time produced by the internal oscillator. (Minimum gate time during gate counter mode is 50 ns.) Reciprocal counter mode counts the number of internal clock pulses generated between input signal pulses.

The M9003 does not have its own memory so it sends measurement data directly to the PC's main memory by DMA (direct memory access) transfer. This enables measurement of up to 64 Mbytes. External trigger signals can also be inserted into the count data as timing information.

Counting can also be performed for a predetermined number of gates starting from the input of an external trigger signal (only during gate counter mode). This allows counting periodic light emission phenomena by integrating their signals after DMA transfer. Anyone can easily make the initial settings since the M9003 is PnP (plug and play) compatible. You can start making measurements right away after the M9003 is unpacked, by just using the sample software that comes supplied with the unit. When used with the U9451 software for fluorescence correlation spectroscopy, the M9003 allows data acquisition and analysis in fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS).

P	arameter	Description / Value	
loout	Number of Input Signals	2 ch	
	Signal Input Level	TTL positive logic	
Input	Signal Pulse Width	8 ns or longer	
	Input Impedance (Switchable)	50 Ω (at SW ON), 100 kΩ (at SW OFF)	
	Counter Method	Gate mode *1 / Reciprocal mode *2	
Counter	Maximum Count Rate	50 MHz (gate mode) / 20 MHz (reciprocal mode)	
	Maximum Count Capacity	28 / 216 counts (gate mode) / 231 counts (reciprocal mode)	
Gate	Gate Time Resolution	50 ns to 12.7 μs	
	Trigger Method	External trigger / Software trigger	
Trigger	External Trigger Signal	TTL negative logic	
Trigger	Trigger Signal Pulse Width	1 μs or more	
	Trigger Signal Output Timing	At start of counting by software trigger	
	Input Signal	TTL level signal (7 bits)	
General I/O	Input Strobe Signal	TTL level signal	
General I/O	Output Signal	Open collector (8 bits)	
	Output Strobe Signal	Open collector	
Compatible OS		Windows [®] 2000 / XP Pro	
Bus Type		PCI bus interface; conforms to Rev 2.1.	
Data Transfer M	lethod	DMA transfer (scatter-gather method)	
Data Transfer C	Juantity	Maximum 64 Mbytes (data quantity transferable by one DMA.)	
Data Transfer R	ate	40 Mbytes/sec (depends on CPU and peripherals)	
Size		PCI standard (half size)	
Weight		150 g	
Operating Ambient Temperature / Humidity *3		+5 °C to +45 °C / Below 80 %	
Storage Temperature / Humidity *3		0 °C to +45 °C / Below 85 %	
CE Marking		Conforms to EMC directives (89 / 336 / EEC) of the European Union.	

*1: Gate counter mode counts the input signal pulses only during each specified gate time.

*2: Reciprocal counter mode counts the number of internal clock pulses generated between input signal pulses.

*3: No condensation

Supplied: CD-ROM (containing instruction manual, device drivers, sample software), Signal cables

E1168-22 × 4 (LEMO-BNC: coaxial 1.5 m), Flat cable plug TXA20A-26PH1-D2P1-D1 (manufactured by JAE)

Photon Detection Unit C9692 Series

The C9692 series Photon Detection Units are photon counting units designed to make low-light measurements at single photon levels without a time-consuming measurement setup. All users need to do is prepare the sample the users want to measure and a personal computer (PC).

Three models (C9692-01/-02/-03) are available so the users can select one that best meets your application. The USB interface allows simple plug and play setup when connecting the C9692 to a PC.

Features

Optical Fiber (FC Type) Compatible (C9692-01) Interlock Function (C9692-02/03)

Automatically closes optical shutter to prevent excessive light from entering PMT if sample compartment is accidentally opened during measurement.

•Built-in UV LED Excitation Light Source (C9692-03)

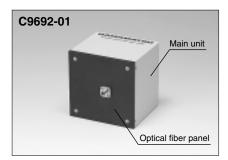
Light source wavelength: 375 nm Output power: 10 mW/cm² Irradiation time: 0.1 to 3600 seconds

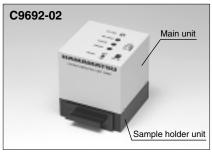
Control Software Functions

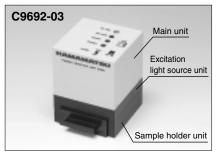
•Time-resolved Measurement

Resolves measurement time per unit time (1 ms or more) allowing measurement of various light emission patterns.

Optical Shutter Control


Opens or closes optical shutter for excess light protection and dark current pulse measurement.


Data Display During Measurement


Continuously transfers measurement data to PC for data monitoring.

Measurement Data Save

Saves measurement data in Excel® format to make data analysis easier.

Specifications

	Parameter	Description / Value	
Detection Method		Photon counting method	
Spectral Respon	se Range	185 nm to 650 nm	
Photocathode Size	ze	16 mm × 18 mm	
Maximum Count	Rate	$3 imes 10^{6} { m s}^{-1}$	
Counter Gate Tir	ne	0.001 s to 10 s (1, 2, 5 step)	
Dark Count (at 2	5 °C) Typ.	50 s ⁻¹	
Counter Capacity	/	32 bits/gate	
	Trigger Method	External trigger / Software trigger	
Trigger	Trigger Signal	TTL negative logic	
	Trigger Signal Pulse Width	100 ns or more	
Input Voltage (D0	C)	+7 V (supplied from AC adapter)	
Input Voltage (A0	C) to Supplied AC Adapter	100 V to 240 V (auto switchable), single phase 50 Hz/60 Hz	
Operating Ambie	ent Temperature / Humidity *1	+5 °C to +40 °C / Below 80 %	
Storage Tempera	ature / Humidity ^{*1}	0 °C to +50 °C / Below 85 %	
PC and	CPU	Intel [®] Pentium [®] 3 or higher	
Recommended	CLK	1 GHz or higher	
	Memory	512 MB or more	
System	OS	Windows [®] 2000/XP Pro	
Requirements	Interface	USB Ver1.1	

*1: No condensation

Supplied: CD-ROM (contains control software), USB cable (1.5 m), AC adapter, Cable for external trigger (1.5 m)

Technical Guide

General Characteristics

Photocathode radiant sensitivity and quantum efficiency

Radiant sensitivity is the photoelectric current generated from the photocathode when struck by light at a given wavelength, divided by the incident radiant power, and expressed in A/W (amperes per watt). Quantum efficiency (QE) is the number of photoelectrons emitted from the photocathode divided by the number of incident photons and is usually expressed as a percent. Cathode radiant sensitivity is one factor in determining signal-to-noise (S/N) characteristics and detection limit of measurement systems, and is used to calculate signal-to-noise ratio (S/N ratio) and noise equivalent power (NEP) representing a lower detection limit. Measurement of radiant sensitivity requires a sophisticated system using a spectrophotometer and also takes a lot of time. Because of this, we only attach spectral response data showing radiant sensitivity to the photomultiplier tube when specially requested by the customer and we charge for this service. Cathode radiant sensitivity cannot be measured once the photomultiplier tube is assembled as a module. If radiant sensitivity data is necessary, please request it when placing an order.

Luminous sensitivity

Cathode luminous sensitivity is the photoelectric current generated from the photocathode when a photomultiplier tube receives light flux from a tungsten filament lamp operated at a distribution temperature of 2856K. Anode luminous sensitivity is the anode output current per incident light flux on the photocathode of a photomultiplier tube when a specific high voltage is applied. The light flux is lowered to an appropriate level by using a neutral density filter.

Luminous sensitivity data is measured and listed in the test sheet prior to shipment except for some types of PMT modules. Luminous sensitivity is particularly useful when comparing PMT modules having a similar spectral response range.

Blue sensitivity index and red/white ratio

Although different from absolute spectral response characteristics, the blue sensitivity index and the red/white ratio are often used for simple comparison of photomultiplier tube spectral response.

Blue sensitivity index is the photoelectric current generated from the photocathode when a blue filter is interposed in the same measurement system as used to measure cathode luminous sensitivity. Blue sensitivity index is an essential parameter in scintillation counting because the Nal(TI) scintillators frequently used in scintillation counting, produce light emissions close to the blue spectrum when transmitted through a blue filter. Blue sensitivity index is not represented in lumens because the light flux once transmitted through a blue filter cannot be expressed in lumens.

Red/white ratio is used for comparing the sensitivity of photomultiplier tubes having a spectral response extending to the near infrared region. Like blue sensitivity index, the red/white ratio is also measured with the measurement system used for cathode luminous sensitivity, but a red to infrared filter is interposed. Red/white ratio is defined as the ratio of the cathode sensitivity measured with a red to infrared filter, to the cathode luminous sensitivity when measured without a filter.

Gain

Gain of PMT modules listed in this catalog is the ratio of anode output current to cathode output current, measured at specified values of control voltage. Gain depends directly on the high voltage applied to the photomultiplier tube, which is adjusted by a control voltage. The gain versus voltage curves are usually plotted on a logarithmic graph and appear as straight lines with the same slope for the same type of photomultiplier tube. This means that the gain of a photomultiplier tube can be easily found by moving in parallel with the typical gain curve.

Dark current

A small amount of output current appears from a PMT module even when operated in a completely darkness. This output current is called "dark current". Dark current varies with the control voltage in proportion to the change in gain. However, the slope of the dark current versus the voltage curve becomes less and less steep as the control voltage is decreased. This dark current at a low control voltage is mainly comprised of leakage current generated on the glass stem and lead pins or the surface of the circuit boards. When a PMT module is operated at a normal high voltage, most of dark current originates from thermionic emissions, especially those from the photocathode. Cooling the module is therefore very effective in reducing the dark current. Hamamatsu PMT modules are designed to exhibit low dark current when used within the specified operating temperature range. However, in applications where dark current is a critical factor, using a PMT module with a built-in cooler is recommended.

Spatial uniformity

When a spot light strikes the photocathode of a photomultiplier tube, the photoelectric sensitivity may vary depending on the photocathode position. This variation in sensitivity is called "spatial uniformity". Spatial uniformity is caused by the irregular sensitivity of the photocathode itself and also by a non-uniform loss of electrons while focused and multiplied by the dynodes after being emitted from different positions on photocathode. Spatial uniformity also depends on the light wavelength. In general, head-on photomultiplier tubes provide better spatial uniformity than side-on tubes. To reduce the adverse effects of spatial uniformity on measurement, the input light must be made to illuminate a wider area on the photocathode or a diffuser plate must be placed in front of the photocathode.

Temperature characteristics

The sensitivity and dark current (dark count) of photomultiplier tubes change with the ambient temperature. The rate of this change (temperature coefficient) depends on the light wavelength. As the ambient temperature decreases, the sensitivity increases in the ultraviolet to visible region while it tends to decrease in the longer wavelength region. As temperature decreases, dark current also decreases because the thermionic emission of electrons is reduced.

Drift and life characteristics

While operating a photomultiplier tube continuously over a long period, the anode output current may vary slightly over time, even though the operating conditions have been kept constant. In this kind of anode current behavior, the stability over a short operating time is called the drift characteristic, while the stability over an extended period of time is called the life characteristic. Both drift and life characteristics differ according to the type of photomultiplier tubes and the magnitude of anode current drawn from the photomultiplier tube. When stability is of prime importance, operating the tube at an average anode current of 1 μ A or less is recommended.

Time response characteristics

The time response characteristics of photomultiplier tubes are very important when measuring high-speed signals. Time response characteristics are usually evaluated in terms of electron transit time, rise time and electron transit time spread (T.T.S.). These characteristics differ depending on the type of photomultiplier tube contained in the PMT module and must be carefully selected to meet the application. In addition to the time response characteristics of photomultiplier tubes, the signal load conditions have effects on PMT module response speeds, particularly on the current-output PMT modules. As the load resistance is made larger, the response speeds of the current-output PMT modules reduce.

Signal-to-noise characteristics

When observing the output waveform of a photomultiplier tube, fluctuations (AC components) can be seen in the signal components. This is so-called "shot noise" resulting from fluctuations in the photoemission and electron multiplication processes.

Since the effects of DC dark current can be largely eliminated, shot noise is the dominant factor in determining the signal-to-noise ratio (S/N ratio) in low-light-level measurement.

To minimize the shot noise and obtain a better S/N ratio, note the following points.

- 1. Use a photomultiplier tube that has as high a quantum efficiency as possible on the wavelength range to be measured.
- 2. Design the optical system for better light collection efficiency so that the incident light is guided to the photomultiplier tube with minimum loss.
- Narrow the measuring system bandwidth as much as possible, as long as no problem occurs in the measurment.

Power Supply Circuit Characteristics

Power supply circuit

There are mainly two types of power supply circuits used in Hamamatsu PMT modules. One type is the Cockcroft-Walton circuit. The other is an active type divider circuit combined with the Cockcroft-Walton circuit.

Cockcroft-Walton circuit

The Cockcroft-Walton circuit is a voltage booster circuit with an array of series-connected diodes, and with capacitors connected at each of the alternate connection points. When a reference voltage is applied to this circuit, voltage potentials boosted 1 time, 2 times, 3 times ... (multiplied by integers) are applied to the dynodes of the photomultiplier tube. This circuit delivers good linearity in both DC and pulsed currents while maintaining low power consumption, and allows designing a compact circuit, but the settling time becomes temporarily long.

Active type divider circuit combined with Cockcroft-Walton circuit

This circuit consists of a Cockcroft-Walton circuit that generates a voltage applied to the entire photomultiplier tube and an active type divider circuit that applies a voltage to each dynode. In the active type divider circuit, transistors are used in place of voltage-dividing resistors for the last few dynodes. This method prevents the dynode-to-dynode voltage from being affected by the photomultiplier tube signal current, allowing good linearity to be obtained up to 60 to 70% of the voltage divider circuit current. This circuit also features short settling time compared to when only a Cockcroft-Walton circuit is used.

Ripple noise

Switching noise may get into the output signal of PMT modules by induction since high-voltage power supplies in PMT modules use a switching power supply. This induced noise is called "ripple noise". Although Hamamatsu PMT modules are designed to minimize this ripple noise, taking the following measures will reduce it even further.

- 1) Place a low-pass filter after the signal output from the PMT module.
- 2) Increase the control voltage to raise the photomultiplier tube gain and lower the amplifier gain.

At Hamamatsu Photonics, ripple noise is measured with a signal load resistance 1 $M\Omega$ and a load capacitance of 22 pF.

Settling time

When the control voltage for a PMT module is changed, the high voltage applied to the photomultiplier tube also changes, but has a slight delay due to the timing of the control voltage input. The settling time is the time required to reach the specified level of high voltage after changing the control voltage. At Hamamatsu Photonics, this settling time is measured when changing the control voltage from +1.0 V to +0.5 V.

Voltage output type PMT modules

Using as a charge amplifier

Voltage output type PMT modules incorporate an operational amplifier that converts a current output from the photomultiplier tube into a voltage output. The operational amplifier has feedback resistance and capacitance, and also serves as a simple charge amplifier allowing pulse measurements such as in scintillation counting applications.

Photon Counting Head

Principle of photon counting

When light intensity becomes extremely low, light can be counted as individual photons. Photomultiplier tubes are ideal for photon counting because they exhibit excellent time resolution, high gain and yet low noise. In low-light-level measurement, photon counting has advantages over the analog detection method. For example, noise pulses can be easily separated, and high stability and a high S/N ratio obtained.

Quantum efficiency

The most important characteristic in photon counting is the photocathode quantum efficiency. The probability of photoelectron emission when a single photon strikes the photocathode is called the photocathode quantum efficiency. Since the number of photoelectrons emitted per photon is one or zero, the quantum efficiency is defined as the ratio of the number of photoelectrons emitted from the photocathode to the number of photons incident on the photocathode over a unit of time. There are various types of photocathodes. It is essential to choose the photocathode that provides the highest quantum efficiency at the wavelength to be measured.

Detection efficiency

Detection efficiency is the ratio of the number of counted pulses (photomultiplier tube output pulses) to the number of incident photons. The "count sensitivity" listed in this catalog is related to this detection efficiency.

Correction of count loss

Theoretically, the maximum count rate is a reciprocal of pulsepair resolution (ability to discriminate between successive pulses). However, since chemiluminescence and bioluminescence occur randomly, the detected signal pulses may overlap each other, causing a counting loss or error. Considering the probability of pulse overlap, the maximum effective count rate would be 1/10 th of the theoretical rate. This count loss of overlapped pulses can be corrected by the following equation.

- $N = \frac{n}{1 n \cdot t}$
- N : True count rate
- n : Measured count rate
- t : Pulse resolution

PMT Module with Gate Function

Gate operation

When the primary excitation light from a strong light sources enters a photomultiplier tube, the signal processing system may saturate, causing adverse effects on the measurement. A mechanical shutter could be used to shut off such primary light. However, mechanical shutters are limited in terms of high-speed operation and service life. In contrast, gate operation is effective in serving as an electronic shutter to gate off excessive light, by changing the dynode voltage in the photomultiplier tube. The electronic shutter operates at high speeds with a high extinction ratio. There are two methods of gate operation. In one method the photomultiplier tube is normally off and turns on when a gate signal is input. In the other method, the photomultiplier tube is normally on and turns off when a gate signal is input.

Gate noise

High-speed gate pulses must be input to perform high-speed gate operation. When a gate pulse is input to a photomultiplier tube, induced noise is generated and appears in the anode signal due to interelectrode capacitance. This is called gate noise. Reducing the gate pulse voltage or noise canceling techniques are effective to some extent in decreasing this gate noise, but cannot completely eliminate it. So it is necessary to increase the photomultiplier tube gain or use the photomultiplier tube with high gain.

Switching ratio

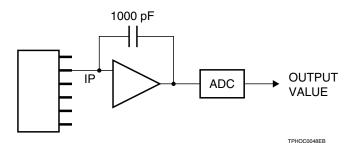
This is the ratio of the photomultiplier tube outputs when the gate is tuned on and off at a constant light level incident on the photocathode. For example, while normally off operation, if the gate-off output is 1 nA and the gate-on output is 10 μ A, the switching ratio is 1 nA to 10 μ A or expressed as 1 : 10⁴.

Internal CPU + IF Module

Counter

The H7467 (including C8907) has an internal 20-bit counter that delivers a maximum count of 1,048,575 within a specified gate time. If a longer gate time is set while the light level is relatively high, the counter is unable to count more than 1,048,575. In this case, set the gate time shorter. To reduce measurement fluctuations, averaging by the software is recommend after acquiring multiple pieces of data.

AD converter


The H7468 (including C8908) uses a charge amplifier to accumulate the electric charge obtained from a photomultiplier tube during a specified sampling time, and then converts it into digital data by a 12-bit AD converter. The minimum bit corresponds to 1 mV. The photomultiplier tube average current can be calculated from the digital data as follow.

 $lp(A) = 1 \times 10^{-12} \bullet Dn / Ts$

lp : Photomultiplier tube average current

Ts : Sampling time

Dn: Digital data (decimal value)

Precautions

Safety precautions

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office.

Some products listed in this catalog generate a high voltage internally. Be sure to observe the following safety measures and take sufficient precautions to prevent possible electrical shocks.

- VOLTAGE
 - •Always turn off the power before moving, installing and inspecting the products or connecting/disconnecting the cables and connectors.
 - •Do not modify any part of the product and do not open the housing case. Malfunctions or electrical shocks might result and the products might overheat, smoke or catch fire.

Handling precautions

Take the following precautions when handling PMT modules.

- •Do not expose the photocathode of PMT modules to excessive light such as sunlight. If exposed, noise will increase and photocathode sensitivity will deteriorate.
- •Do not touch the light input window with bare hands. Dirt and grime on the window causes loss of optical transmittance. If the window becomes soiled with dirt or grime, wipe it clean using alcohol.
- •Helium will penetrate through silica (quartz) glass windows and increase noise. Avoid using or storing those PMT modules in an atmosphere where helium is present.
- •Carefully check that the power supply output voltage and polarity are correct.
- Do not apply strong vibrations or impacts to PMT modules.
- Do not apply a strong tightening force to localized sections.
- Do not let moisture or dust penetrate inside.
- Consult with us if you must take special countermeasures against tough conditions such as high temperatures, high humidity or strong magnetic fields.
- •When designing equipment using or incorporating products listed in this catalog, install safety interlocks (breakers, etc.) to prevent accidents from electrical shocks or excessive light input, etc.

Warranty

Hamamatsu PMT modules and related products are warranted to the original purchaser for a period of one year after delivery. The warranty is limited to repair or replacement of defective products due to defects in workmanship or materials used in their manufacture.

Even if within the warranty period, the warranty shall not apply to failures due to misuse, mishandling, modification by the customer, or accidents such as natural or manmade disasters.

The customer should inspect and test all products as soon as they are delivered.

Ordering Information

This catalog lists PMT modules and related products currently available from Hamamatsu Photonics. Please select those products that best match your design specifications. Delivery time depends on the type of product. Some are already in stock but some require extra delivery time. If you do not find the exact product you want in this catalog, feel free to contact our sales office nearest you. We will modify our current products or design new types to meet your specific needs.

MEMO

CUSTOMER INQUIRY SHEET

We can help you select anything from photomultiplier tube modules ideal for your particular type of measurement and application, to subassemblies with optical system and signal processing circuits designed expressly for your equipment. To help us give you exactly the right advice, please fill in the sheet below and FAX it to us or contact our sales office nearest you.

[Application]

[Measurement Con	ditions]	
-		
Measurement ligh	t 🗌 Light absorption 📋 Reflected light 📋 Fluorescence 🔛 Ch	emiluminescence
	□ Other ()
Light size	()mm in diameter or () mm $ imes$ () mm
Wavelength	Monochromatic wavelength () nm	
	\Box Wavelength range () nm to () nm	
Light intensity	DC light : Average intensity () W or () photons/second
	\Box Pulsed light : Peak intensity () W or () photons/pulse
	Pulse width () seconds, Repetitive rate	e()Hz
Frequency bandw	ridth for measurement () Hz	
Dynamic range	() decades or Minimum light intensity () W
[What kind of prod	ucts do you want?]	
Photomultiplier t Combination of	ube modules the adequet PMT module and the accessories.	

Custom designed subassemblies

Others (

[Sketch of product you want]

Company Name			
Division or Post	1	Your Name	
Address			
TEL		FAX	
Type of Business		E-mail	ail

)

HAMAMATSU

HAMAMATSU PHOTONICS K.K., Electron Tube Division

314-5, Shimokanzo, Iwata City, Shizuoka Pref., 438-0193, Japan Telephone: (81)539/62-5248, Fax: (81)539/62-2205 www.hamamatsu.com

Main Products

Electron Tubes

Photomultiplier Tubes Light Sources Microfocus X-ray Sources Image Intensifiers X-ray Image Intensifiers Microchannel Plates Fiber Optic Plates

Opto-semiconductors

Si Photodiodes Photo IC PSD InGaAs PIN Photodiodes Compound Semiconductor Photosensors Image sensors Light Emitting Diodes Application Products and Modules Optical Communication Devices High Energy Particle/X-ray Detectors

Imaging and Processing Systems

Video Cameras for Measurement Image Processing Systems Streak Cameras Optical Measurement Systems Imaging and Analysis Systems

REVISED FEB. 2007

Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. © 2007 Hamamatsu Photonics K.K.

Sales Offices

ASIA:

HAMAMATSU PHOTONICS K.K. 325-6, Sunayama-cho, Hamamatsu City, 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889

U.S.A.: HAMAMATSU CORPORATION

Main Office 360 Foothill Road, P.O. BOX 6910, Bridgewater, N.J. 08807-0910, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com

Western U.S.A. Office: Suite 200, 2875 Moorpark Avenue San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 E-mail: usa@hamamatsu.com

United Kingdom: HAMAMATSU PHOTONICS UK LIMITED Main Office

2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom Telephone: 44-(0)1707-294888, Fax: 44-(0)1707-325777 E-mail: info@hamamatsu.co.uk

South Africa Office: PO Box 1112, Buccleuch 2066, Johannesburg, Repubic of South Africa Telephone/Fax: (27)11-802-5505

France, Portugal, Belgium, Switzerland, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L. Main Office

Main Onice 19, Rue du Saule Trapu Parc du Moulin de Massy 91882 Massy CEDEX, France Telephone: (33)1 69 53 71 00 Fax: (33)1 69 53 71 10 E-mail: infos@hamamatsu.fr

Swiss Office: Dornacherplatz 7 4500 Solothurn, Switzerland Telephone: (41)32/625 60 60, Fax: (41)32/625 60 61 E-mail: swiss@hamamatsu.ch

Belgian Office: Scientic Park, 7, Rue du Bosquet B-1348 Louvain-La-Neuve, Belgium Telephone: (32)10 45 63 34 Fax: (32)10 45 63 67 E-mail: epirson@hamamatsu.com

Spanish Office: Centro de Empresas de Nuevas Tecnologies Parque Tecnológico del Vallés 08290 CERDANYOLA, (Barcelona) Spain Telephone: (34)93 582 44 30 Fax: (34)93 582 44 31 E-mail: spain@hamamatsu.com Germany, Denmark, The Netherlands, Poland: HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Main Office Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de

Danish Office: Skovbrynet 3 DK-5610 Assens, Denmark Telephone: (45)4346-6333, Fax: (45)4346-6350 E-mail: lokoldbaek@hamamatsu.de

The Netherlands Office: PO Box 50.075, NL-1305 AB Almere Netherlands Telephone: (31)36-5382-123, Fax: (31)36-5382-124 E-mail: info@hamamatsu.nl

Poland Office: ul. sw. A. Boboli 8, 02-525 Warszawa, Poland Telephone: (48)22-660-8340, Fax: (48)22-660-8352 E-mail: info@hamamatsu.de

North Europe and CIS: HAMAMATSU PHOTONICS NORDEN AB Main Office Smidesvägen 12, SE-171 41 Solna, Sweden Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Russian Office: Riverside Towers Kosmodamianskaya nab. 52/1, 14th floor RU-113054 Moscow, Russia Telephone/Fax: (7)495 411 51 54 E-mail: info@hamamatsu.ru

Italy: HAMAMATSU PHOTONICS ITALIA S.R.L. Main Office Strada della Moia, 1/E 20020 Arese (Milano), Italy Telephone: (39)02-93 58 1733, Fax: (39)02-93 58 1741 E-mail: info@hamamatsu.it

Rome Office: Viale Cesare Pavese, 435, 00144 Roma, Italy Telephone: (39)06-50513454, Fax: (39)06-50513460 E-mail: inforoma@hamamatsu.it